检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王娇娇 马小雨 刘畅[1,2] 俞定国 俞东进[3] 张银珠 WANG Jiaojiao;MA Xiaoyu;LIU Chang;YU Dingguo;YU Dongjin;ZHANG Yinzhu(Institute of Intelligent Media Technology,Communication University of Zhejiang,Hangzhou 310018,China;Key Lab of Film and TV Media Technology of Zhejiang Province,Hangzhou 310018,China;School of Computer Science and Technology,Hangzhou Dianzi University,Hangzhou 310018,China;Information Center,Shanghai Dianji University,Shanghai 201306,China)
机构地区:[1]浙江传媒学院智能媒体技术研究院,浙江杭州310018 [2]浙江省影视媒体技术研究重点实验室,浙江杭州310018 [3]杭州电子科技大学计算机学院,浙江杭州310018 [4]上海电机学院信息化中心,上海201306
出 处:《计算机集成制造系统》2024年第8期2756-2775,共20页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(62002316);浙江省重点研发计划资助项目(2019C03138,2017C01010,2021C03138);浙江省公益性技术应用研究资助项目(LGF21F010001)。
摘 要:随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需。该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测。但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移。针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验。实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案。With the improvement of industrial manufacturing business processes,monitoring technology aimed at predicting the results of execution is necessary.The technique builds prediction models based on historical execution to predict the results of the processes being executed.However,existing studies assume that the process execution behavior remains the same,but the process often changes during the operation(the process execution drift)in practical application,so the prediction model needs to adapt to this drift.In response to this situation,inspired by the idea of online learning,a predictive process monitoring technology was proposed based on XGBoost incremental implementation targeting process execution outcomes,and a large number of experiments on real data sets and synthetic data sets were conducted respectively.The experimental results showed that the incremental learning technology based on XGBoost could well provide an effective solution for predictive process monitoring in real scenarios of industrial manufacturing.
关 键 词:预测性业务流程监控 XGBoost 增量学习 概念漂移
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.79.102