检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张鹏 祝长生[1] ZHANG Peng;ZHU Chang-sheng(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China)
出 处:《振动工程学报》2024年第8期1269-1280,共12页Journal of Vibration Engineering
基 金:国家科技重大专项(J2019-IV-0005-0073);基础科研计划(2019110C026,ZD-232-02)。
摘 要:旋转机械基础的摆动会给转子系统带来附加的陀螺力矩和惯性载荷,影响转子系统的振动及稳定性,甚至影响转子的正常运行。为了有效控制电磁轴承‐柔性转子系统在基础摆动下的振动,提出了一种基于基础加速度的前馈补偿控制方法。该方法基于柔性转子系统动力学模型以及基础摆动的信息,可直接得到抑制转子振动所需的最佳补偿电流,无需迭代和复杂的控制器结构,因此具有较强的快速性和实用性。为了消除建模误差对前馈补偿控制性能的影响,给出了对补偿电流进行修正的方法。仿真分析了补偿算法对转子振动的抑制效果。在搭建的电磁轴承‐柔性转子系统基础运动试验平台上,进行了基础摆动条件下转子悬浮、恒速、加速运行时的振动控制有效性试验。理论和试验结果一致,表明基础摆动产生的附加惯性载荷会使电磁轴承‐柔性转子系统在垂直于摆动方向上的振动明显增大,产生的附加陀螺力矩会使沿摆动方向的振动有所增大,且增加的幅度随转子转速的升高而增大。在包含一阶弯曲临界转速的转速范围内,基础加速度前馈补偿控制对基础摆动条件下的转子振动均有显著的抑制效果。Base swing will bring additional gyroscopic moment and inertia load to the rotating machinery,affecting the vibration and stability of the rotor system and even endangering the rotor operation.In order to effectively control the vibration of the active magnetic bearing(AMB)-flexible rotor system under the base swing,a base acceleration feedforward algorithm is proposed in this paper.With the dynamic model and the parameters of the base swing,the optimal compensation current to suppress the vibration can be directly obtained by the proposed algorithm.Because of no iteration and simple structure,the algorithm has strong rapidity and practicality.Furtherly,to eliminate the influence of modeling error on the compensation performance,a method to correct compensating current is suggested.After that,the influence of the proposed algorithm on the rotor vibration in the spin speed range including the first bending critical speed is simulated.Finally,on the test platform,the effectiveness of the algorithm was verified when rotor in suspension without spin,constant speed and acceleration under the base swing.The theoretical and experimental results agree that the vibration perpendicular to the swing axis increases obviously due to the inertia load.The additional gyroscopic moment increases the vibration along the swing axis,and the rising amplitude grows along with the increase of the rotor spin speed.The algorithm proposed can efficiently suppress the rotor vibration under the base swing in the spin speed range including the first bending critical speed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.237.16