CCSD:面向话题的讽刺识别方法  

CCSD:Topic-oriented Sarcasm Detection

在线阅读下载全文

作  者:刘其龙 李弼程[1] 黄志勇 LIU Qilong;LI Bicheng;HUANG Zhiyong(School of Computer Science and Technology,Huaqiao University,Xiamen,Fujian 361000,China)

机构地区:[1]华侨大学计算机科学与技术学院,福建厦门361000

出  处:《计算机科学》2024年第9期310-318,共9页Computer Science

基  金:装备预研教育部联合基目(8091B022150)。

摘  要:随着社交媒体的发展,越来越多的人在社交平台上发表对热点话题的看法,其中讽刺手法的运用严重影响了社交媒体中情感分析的精度。目前面向话题的讽刺识别研究未同时考虑上下文和常识知识的作用,也忽略了在同一个话题下进行讽刺识别的场景。为此,提出了基于上下文和常识的讽刺识别模型(Sarcasm Detection with Context and Common Sense,CCSD)。首先,模型使用C 3 KG常识库生成常识文本,并将目标句、话题上下文和常识文本作为预训练BERT模型的输入。其次,使用注意力机制来关注目标句和常识中重要的信息。最后,通过门控机制和特征融合,实现讽刺识别。文中构建了一个面向话题的讽刺识别数据集,以验证模型在特定话题中的有效性。实验结果表明,相比基线模型,新模型的性能更优。With the development of social media,an increasing number of people express their opinions about hot topics on social platforms,and the utilization of sarcastic expression has severely affected the accuracy of sentiment analysis in social media.Currently,topic-oriented sarcasm detection research does not consider the role of context and common sense knowledge simultaneously,and also ignores the scene of sarcasm recognition under the same topic.This paper proposes a sarcasm detection with context and commonsense(CCSD)approach.Firstly,the model uses the C 3 KG commonsense knowledge base to generate commonsense text.Then,the target sentence,topic context,and commonsense text are concatenated as the input to the pre-training BERT model.In addition,an attention mechanism is used to focus on important information in the target sentence and commonsense text.Finally,sarcasm detections are realized through gating mechanism and feature fusion.A topic-oriented sarcasm detection dataset is constructed to verify the effectiveness of the proposed model in specific topics.Experimental results show that the proposed model achieves better performance compared to baseline models.

关 键 词:讽刺识别 面向话题的讽刺识别 上下文 常识知识 注意力机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象