检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周景[1] 李英杰 周蓉[1] 崔灿灿 ZHOU Jing;LI Ying-Jie;ZHOU Rong;CUI Can-Can(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
机构地区:[1]华北电力大学控制与计算机工程学院,北京102206
出 处:《计算机仿真》2024年第8期228-233,共6页Computer Simulation
基 金:国家自然科学基金项目(52179014)。
摘 要:针对输电线路无人机巡检图像中小目标检测精度低下的问题,提出一种改进型YOLOv7的输电线路变尺度多目标的检测方案。方案首次将基于YOLO7的目标检测模型应用到输电线路目标检测中,引入Transformer注意力工作机制,使用g^(n)Conv代替高效聚合网络中的卷积层提取巡检图像特征,经过RFPN网络将不同分辨率特征进行融合后,分别进行不同尺度目标的预测,提高对小目标的检测精度,达到了93.68%的平均检测精度,也可以检测到被遮挡的目标,具有一定的泛化能力。结果表明,上述模型能够有效检测出巡检图像中的防震锤和绝缘子,为后续故障诊断提供了理论依据。Aiming at the problem of low detection accuracy of small targets in UAV inspection images of transmission lines,an improved YOLOv7 variable-scale multi-target detection scheme for transmission lines is proposed.This solution applies the YOLOv7-based target detection model to transmission line target detection for the first time,introducing the Transformer attention mechanism,usingg"Conv to replace the convolution layer in the efficient aggregation network to extract inspection image features,and fusing features of different resolutions through RFPN network to predict targets of different scales.The detection accuracy of small targets is improved,reaching an average detection accuracy of 93.68%.It can also detect occluded targets and has a certain generalization ability.The results show that the model can effectively detect the anti-vibration hammer and insulator in the inspection image,which provides a theoretical basis for subsequent fault diagnosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.215.114