基于LRMC模型的B2B定制化生产企业客户细分  

LRMC Model For Customer Segmentation Of B2B Customized Production Enterprises

在线阅读下载全文

作  者:李文强 金鸿 吕盛坪[1] 劳景春 LI Wen-qiang;JIN Hong;LV Sheng-ping;LAO Jing-chun(College of Engineering,South China Agricultural University,Guangzhou Guangdong 510642,China)

机构地区:[1]华南农业大学工程学院,广东广州510642

出  处:《计算机仿真》2024年第8期506-512,共7页Computer Simulation

基  金:国家自然科学基金(52275487);广东省自然科学基金(2021A1515012395)。

摘  要:客户细分是企业精益管控各类客户的重要手段。研究首先综合考虑B2B定制化企业客户忠诚度、流失趋势、价值贡献和潜在价值等特性构建LRMC(length recency monetary capital)客户细分模型,基于LRMC模型指标需求融合转换企业订单数据和网络爬虫所获取客户特征数据;然后,引入密度峰值思想优化K-means聚类机制,以LRMC参数为输入对客户进行聚类划分,并采用组合赋权法计算不同客户群体加权价值;最后,开展实验,验证所提出模型和方法能更高效地标识客户关键特征并细分客户。提出的客户细分方法可为B2B定制化生产企业精益化客户关系管理提供理论支撑。Customer segmentation is a lean control means of various customers for enterprises.In this study,an LRMC(length,recency,monetary,capital)customer segmentation model was constructed with a comprehensive consideration of the characteristics of B2B customized enterprise customers including loyalty,churn trend,value contribution and potential value and so on.On the basis of LRMC indicator requirements,the enterprise order data and the customer characteristic data crawled from the web were fused and transformed.Then,the idea of density peak was introduced to optimize the K-means clustering mechanism and the parameters of LRMC were used as input to cluster customers.Subsequently,the combined weighting method was utilized to calculate the weighted value of different customer groups.Finally,experiments were conducted to verify that the proposed model and clustering method can effectively identify the key characteristics of customers and segment customers.The customer segmentation method proposed in this study can provide theoretical support for lean customer relationship management of B2B customized production enterprises.

关 键 词:客户细分 聚类划分 组合赋权 客户关系管理 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象