检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:包学才[1,2] 陈豹 吴灿锐 汪忠喜 占礼彬 BAO Xuecai;CHEN Bao;WU Canrui;WANG Zhongxi;ZHAN Libin(School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China;Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Nanchang 330099,China)
机构地区:[1]南昌工程学院信息工程学院,江西南昌330099 [2]南昌工程学院江西省水信息协同感知与智能处理重点实验室,江西南昌330099
出 处:《人民长江》2024年第8期231-238,共8页Yangtze River
基 金:国家自然科学基金项目(61961026);江西省科技厅重大科技研发专项“揭榜挂帅”制项目(20213AAG01012);江西省水利厅科技项目(202223YBKT19)。
摘 要:为有效提升河湖采砂船智能化管理水平,提出了一种基于改进FaceNet的河湖采砂船“船脸”识别算法。首先在FaceNet算法网络的全局平均池化层后引入CA注意力模块,增强算法对于感兴趣区域的自适应关注能力;其次训练时在网络的最后引入线性层构建采砂船个体“船脸”识别器,将分类和识别的方法相结合共同应用于采砂船“船脸”识别;最后在训练时引入交叉熵损失函数,辅助原FaceNet算法中的三元组损失函数共同实现收敛。实验结果表明:改进的FaceNet算法对于白天场景下采砂船个体“船脸”目标识别的正确率比改进前提高了4.77%,达79.22%;夜间场景下目标识别的正确率提高了2.83%。研究成果适用于采砂船“船脸”识别任务,可为河湖采砂船的智能监管提供技术参考。In order to effectively improve the intelligent management level of river and lake sand dredgers,an improved FaceNet based“ship face”recognition algorithm for river and lake sand dredgers was proposed.Firstly,a CA attention module was introduced behind the global average pooling layer of the FaceNet algorithm network to enhance the adaptive attention ability for regions of interest.Secondly,a linear layer was introduced at the end of the network during training to construct an individual“ship face”recognizer for sand dredgers.The combination of classification and recognition methods was applied to the“ship face”recognition of sand dredgers.Finally,Cross entropy Loss function was introduced into the training to assist the Triplet loss function in the original FaceNet algorithm to converge together.The experimental results showed that the accuracy of the improved FaceNet algorithm for identifying individual“ship face”objects on sand dredgers in daytime had increased by 4.77 percentage points compared to that before the improvement,reaching 79.22%.The accuracy of identifying individual“ship face”objects of sand dredgers in night had increased by 2.83 percentage points.This algorithm is suitable for the“ship face”recognition task of sand dredgers and can provide effective technical support for the intelligent supervision of river and lake sand dredgers.
关 键 词:采砂船监管 FaceNet 深度学习 卷积神经网络 目标识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49