检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董小斌 林立[1,2] 周建华[1,2] 窦威龙 吴悦 王智琦 DONG Xiaobin;LIN Li;ZHOU Jianhua;DOU Weilong;WU Yue;WANG Zhiqi(Shaoyang University,Hunan Provincial Key Laboratory of Grids Operation And Control on Multi-PowerSources Area,Shaoyang 422000,Hunan,China;Shaoyang University,College of Electrical Engineering,Shaoyang 422000,Hunan,China;Shaoyang University,School of Information Science and Engineering,Shaoyang 422000,Hunan,China)
机构地区:[1]邵阳学院多电源地区电网运行与控制湖南省重点实验室,湖南邵阳422000 [2]邵阳学院电气工程学院,湖南邵阳422000 [3]邵阳学院信息科学与工程学院,湖南邵阳422000
出 处:《电气传动自动化》2024年第3期1-5,共5页Electric Drive Automation
基 金:湖南省自然科学基金项目(2022JJ50186);湖南省教育厅科学研究项目(20A447);邵阳学院研究生科研创新项目资助(CX2022SY024)。
摘 要:针对永磁同步电机常规模型预测控制在建立预测模型时比较依赖准确的电机数学模型,负载扰动时会对其控制性能造成影响。提出一种基于降阶龙伯格观测器的模型预测控制方法,在电流环采用PI控制器,速度环采用基于负载扰动补偿的模型预测控制器,构建降阶龙伯格观测器对负载扰动进行估算,将估算值补偿到速度环的输出值中来起到抑制扰动的作用。由仿真及实验结果可知,所提算法相比于常规模型预测控制具有更快的动态响应,控制精度更高,有效提高了系统的抗负载干扰性能。Conventional model predictive control for permanent magnet synchronous motors relies heavily on accurate motor mathematical models when establishing predictive models,and load disturbances can affect their control performance.A model predictive control method based on a reduced order Luenberger observer is proposed,which uses a PI controller in the current loop and a model predictive controller based on load disturbance compensation in the speed loop.A reduced order Luenberger observer is constructed to estimate the load disturbance,and the estimated value is compensated to the output value of the speed loop to suppress the disturbance.From the simulation and experimental results,it can be seen that the proposed algorithm has faster dynamic response and higher control accuracy compared to conventional model predictive control,effectively improving the system's anti load interference performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.52.13