检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔天舒 刘航 范宇杰 石亮 张宏江 Cui Tianshu;Liu Hang;Fan Yujie;Shi Liang;Zhang Hongjiang(China Academy of Aerospace Science and Innovation,Beijing 100080,China;China Spacesat Co.,Ltd.,Beijing 100089,China)
机构地区:[1]中国航天科技创新研究院,北京100080 [2]航天东方红卫星有限公司,北京100089
出 处:《航天电子对抗》2024年第4期26-32,共7页Aerospace Electronic Warfare
摘 要:低截获概率(LPI)雷达以其优越的反截获性能得到广泛应用,识别LPI雷达波形对电子侦察系统至关重要。然而,基于深度学习的LPI雷达波形识别方法存在网络参数量大、计算复杂度高等问题,严重影响了其在算力不足的场景下的使用。面向LPI雷达波形快速精确识别需求,提出了一种基于时相特征卷积网络的雷达波形识别模型。该方法与传统的时频变换方法不同,采用卷积神经网络直接从原始信号中提取相位和短时特征,具有轻量化和低复杂度的特点。通过包含13个LPI雷达波形识别实验的验证表明,该方法即使在信噪比为-4 dB的情况下,也能实现90%以上的准确率;与基于Wigner‑Ville变换和图像深度网络识别方法相比,该方法只需要12%的参数和0.14%的计算资源,就可达到相同精度,兼顾了准确率和处理速度,具有非常好的工程应用前景。Low probability of intercept(LPI)radars are widely employed due to their excellent anti-intercep‑tion capabilities,and the identification of LPI radar waveforms is essential for electronic reconnaissance systems.However,the existing deep learning-based method for LPI radar waveform recognition faces challenges,such as large network parameters and high computational complexity.These issues significantly limit its applicability in re‑source-constrained scenarios.Addressing the need for swift and accurate LPI radar waveform recognition,a novel radar waveform recognition model based on a time-phase feature convolutional network is introduced.Unlike tra‑ditional time-frequency transformation methods,this approach utilizes a convolutional neural network to directly extract phase and short-time features from the raw signal.This results in a lightweight and low-complexity model.Validation through 13 LPI radar waveform recognition experiments demonstrates that the proposed method achieves over 90%accuracy even at a signal-to-noise ratio of-4 dB.Compared to recognition methods based on the Wigner-Ville transform and image deep networks,The presented method requires only 12%of the parame‑ters and 0.14%of the computational resources to achieve equivalent accuracy which strikes a balance between ac‑curacy and processing speed,exhibiting promising potential for practical engineering applications.
关 键 词:低拦截概率雷达 波形识别 深度学习 卷积神经网络 相位和短时特征
分 类 号:TN975[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49