检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翔云[1,2] 张凯华 陈作辉 宣琦 Xiang Yun;Zhang Kaihua;Chen Zuohui;Xuan Qi(Institute of Cyberspace Security,Zhejiang University of Technology,Hangzhou 310023,China;Binjiang Institute of Artificial Intelligence,ZJVT,Hangzhou 310056,China)
机构地区:[1]浙江工业大学网络空间安全研究院,杭州310023 [2]滨江区浙工大人工智能创新研究院,杭州310052
出 处:《仪器仪表学报》2024年第5期33-42,共10页Chinese Journal of Scientific Instrument
基 金:浙江省重点研发计划(2021C02052);浙江省“尖兵”“领雁”研发攻关计划(2022C01018,2022C02016)项目资助。
摘 要:基于视觉的细颗粒物浓度(PM_(2.5))估计技术依据成像时悬浮细颗粒物对光线散射和吸收的整体影响来评估其浓度。这类技术具备良好的普适性,可实时检测广阔区域。已有研究依赖大气光均匀且充足的日间场景,无法适用于缺乏大气光且光照不均匀的夜间场景。本文提出首个基于视觉的夜间PM_(2.5)浓度估计方法,通过图像处理捕获人造光源在不同散射方向的光强分布,并以此特征拟合浓度值。该方法创新地将人造光源及周边光晕区域视为夜晚雾霾信息的主要来源。由于夜间自然光照强度相对人造光源较低,其主导的区域往往趋于漆黑,导致日间雾霾信息的主要来源(自然光照下像素颜色随着景深增加而逐渐接近“大气光/天空”颜色)在夜间的作用相比光源处要小很多。该方法明显优于日间PM_(2.5)估计方法,平均误差(MAE)为6.187μg/m^(3),决定系数(R^(2))为0.857,对比最新的端到端的神经网络方法在MAE和R^(2)上分别有20.69%、13.36%的相对提升。The technique for estimating the concentration of fine particulate matter(PM_(2.5))based on visual cues relies on assessing its concentration by considering the overall effect of suspended fine particles on light scattering and absorption during imaging.These technologies demonstrate robust generalizability and real-time detection capabilities across large-scale areas.Existing studies depend on daytime scenes with uniform and sufficient atmospheric light,limiting their applicability to nighttime scenario with insufficient atmospheric light and uneven illumination.This paper introduces the pioneering vision-based nighttime estimation method of fine particulate matter concentration,which captures the intensity distribution of an artificial light source in various scattering directions through image processing,and utilizes the feature to correlate with fine particulate matter concentration.The proposed method innovatively leverages the artificial light source and its surrounding glowing area as the main source of nighttime haze information.Since areas dominated by natural lighting typically appear black at night,the conventional basis for daytime haze estimation(i.e.,pixel value approaching the color of“atmospheric-light/sky”as the depth of field increases),is barely useful at night.This method outperforms existing daytime haze estimation methods,achieving a mean absolute error(MAE)of 6.187μg/m^(3) and a correlation coefficient(R^(2))of 0.857.Compared to the popular end-to-end neural network method,it shows a relative improvement of 20.69% in MAE and 13.36%in R^(2).
关 键 词:空气质量估计 计算机视觉 细颗粒物 光晕 夜间图像
分 类 号:TH89[机械工程—仪器科学与技术] TP75[机械工程—精密仪器及机械]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117