纯电动双电机汽车驱动系统匹配优化  

Matching Optimization of Pure Electric Dual Motor Vehicle Drive System

在线阅读下载全文

作  者:王继贤 陈焕明[1] 杜晓冬 WANG Jixian;CHEN Huanming;DU Xiaodong(College of Mechanical and Electrical Engineering,Qingdao University,Qingdao 266071,China)

机构地区:[1]青岛大学机电工程学院学院,山东青岛266071

出  处:《青岛大学学报(工程技术版)》2024年第2期60-67,共8页Journal of Qingdao University(Engineering & Technology Edition)

基  金:山东省高等学校科技计划项目(J18KA048)。

摘  要:为提高纯电动汽车驱动系统效率,降低电动汽车能耗,以某款电动汽车为例,通过AVL-Cruise建立电动汽车的单电机驱动系统和同轴双电机驱动系统的整车模型,计算得到相关参数;利用Simulink搭建控制策略仿真模型,验证整车模型的经济性与动力性。以整体驱动效率最优为优化目标,设计了粒子群优化控制策略优化了同轴双电机驱动系统模型,验证该模型的经济性与动力性。仿真结果表明,较单电机驱动系统车辆,同轴双电机驱动系统车辆的动力性、经济性平均提升了5.3%、8.69%;在同轴双电机驱动系统车辆中,使用粒子群优化算法控制策略的车辆经济性提升了1.5%。In order to improve the efficiency and reduce the energy consumption of electric vehicles,a mathematical model of a certain electric vehicle was established,and the relevant vehicle parameter data was obtained by mathematical calculation.First,the vehicle models of single-motor drive system and coaxial dual-motor drive system of electric vehicle were established by AVL-Cruise,and the control strategy simulation model was built by Simulink to verify the economy and performance of the vehicle model.Then the particle swarm optimization control strategy was designed with the optimal overall drive efficiency as the optimization objective,and applied to the coaxial two-motor electric vehicle drive system model to verify its economy and dynamics.The simulation results show that the power and economy of the two vehicles with the coaxial dual-motor drive system were improved by an average of 5.3%and 8.69%,respectively compared with that of the vehicles with the single-motor drive system.In the vehicles with the coaxial dual-motor drive system,the economy of the vehicles using the particle swarm optimization control strategy was improved by an average of 1.5%.

关 键 词:双电机驱动 Cruise仿真 驱动效率最优 转矩分配 粒子群优化 

分 类 号:U469.72[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象