A Convergence Study of SGD-Type Methods for Stochastic Optimization  

在线阅读下载全文

作  者:Tiannan Xiao Guoguo Yang 

机构地区:[1]LMAM and School of Mathematical Sciences,Peking University,Beijing 100871,China

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2023年第4期914-930,共17页高等学校计算数学学报(英文版)

基  金:supported by the NSFC(Grant No.11825102);the China Postdoctoral Science Foundation(Grant No.2023M730093);the National Key R&D Program of China(Grant No.2021YFA1003300).

摘  要:In this paper,we first reinvestigate the convergence of the vanilla SGD method in the sense of L2 under more general learning rates conditions and a more general convex assumption,which relieves the conditions on learning rates and does not need the problem to be strongly convex.Then,by taking advantage of the Lyapunov function technique,we present the convergence of the momentum SGD and Nesterov accelerated SGDmethods for the convex and non-convex problem under L-smooth assumption that extends the bounded gradient limitation to a certain extent.The convergence of time averaged SGD was also analyzed.

关 键 词:SGD momentum SGD Nesterov acceleration time averaged SGD convergence analysis non-convex 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象