检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢振华 刘玉莹 侯林明 王尧[4] 周家旺 盛德杰 XIE Zhenhua;LIU Yuying;HOU Linming;WANG Yao;ZHOU Jiawang;SHENG Dejie(Zhejiang Testing&Inspection Institute for Mechanical and Electrical Products Quality Co.,Ltd.,Hangzhou 310000,China;Intelligent Electrical Testing and Testing Technology Zhejiang Engineering Research Center,Hangzhou 310051,China;Key Laboratory of Low Voltage Apparatus Intelligentization and New Energy Application of Zhejiang Province,Hangzhou 310051,China;State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300401,China)
机构地区:[1]浙江省机电产品质量检测所有限公司,浙江杭州310000 [2]智能电器试验与检测技术浙江省工程研究中心,浙江杭州310051 [3]浙江省低压电器智能化与新能源应用重点实验室,浙江杭州310051 [4]河北工业大学省部共建电工装备可靠性与智能化国家重点实验室,天津300401
出 处:《电器与能效管理技术》2024年第8期50-56,68,共8页Electrical & Energy Management Technology
基 金:中央引导地方科技发展资金项目(226Z2102G);浙江省自然科学基金(LTGG23E070001);河北省高等学校科学技术研究项目(CXY2023006)。
摘 要:光伏系统中,因绝缘老化或接线松动而出现的直流串联电弧故障极易引发电气火灾。因此,光伏系统必须安装电弧故障检测装置,而其易因阴影遮挡和逆变器启动引发的直流侧高频噪声而误跳闸。将注意力机制和一维卷积神经网络相结合,提出一种基于注意力权重优化电弧特征的电弧故障检测方法。通过可视化电弧特征贡献权重,提取8~18 kHz和28~38 kHz电弧关键特征频段,并剔除8~23 kHz频段中的干扰特征频段。经验证,使用关键电弧特征训练的电弧故障检测模型可以成功避免阴影遮挡和逆变器启动过程带来的误动,最终使电弧检测准确率提高到99.33%。The DC series arc fault in photovoltaic systems caused by insulation aging or loose wiring is highly prone to electrical fires.Therefore,the arc fault detection devices must be installed in photovoltaic systems.However,the arc fault detection devices easily malfunction due to DC-side high-frequency noise caused by shadow occlusion and inverter startup.A novel arc fault detection method is proposed based on attention weight screening of arc features by combining the attention mechanism with the 1d convolutional neural network.By visualizing the contribution weight of arc features,the critical feature bands of 8~18 kHz and 28~38 kHz are extracted,and the interference arc features bands in the 8~23 kHz frequency band are removed.It has been verified that the arc fault detection model trained with the key arc features can successfully avoid the false activation caused by shadow occlusion and inverter startup,and the an arc detection accuracy of 99.33%is ultimately achieved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7