基于机器视觉的葡萄藤结构分割方法研究  

Research on Grapevine Structure Segmentation Method Based on Machine Vision

在线阅读下载全文

作  者:胡国玉[1] 董娅兰 古丽巴哈尔·托乎提[1] 刘广 周建平[1] HU Guoyu;DONG Yalan;Gulbahar Tohti;LIU Guang;ZHOU Jianping(School of Mechanical Engineering,Xinjiang University,Urumqi 830049,China)

机构地区:[1]新疆大学机械工程学院学院,乌鲁木齐830017

出  处:《中国农业科技导报》2024年第9期105-111,共7页Journal of Agricultural Science and Technology

基  金:新疆维吾尔自治区创新团队项目(2022D14002)

摘  要:葡萄藤结构的精确分割是推理与定位冬季剪枝点位置的重要前提。为精确分割葡萄藤结构,建立自然种植条件下的葡萄藤结构数据集,提出一种基于U-net模型的葡萄藤结构分割方法,通过主干特征提取网络和模型分割性能的对比试验,得出最优的U-net模型结构并验证其在不同疏密程度目标下的分割性能。结果表明,以VGG 16为主干特征提取网络的U-net模型准确率达93.55%、召回率为94.15%、类别平均像素准确率为94.15%、均交并比为88.65%,与传统图像分割方法和对照组模型分割效果相比,其能保证自然种植背景下葡萄藤各结构分割边缘完整,结构之间连接关系正确,可适用于植株间存在遮挡的葡萄藤结构分割任务,为实现智能化葡萄藤冬季剪枝作业奠定基础。The precisive segmentation of grapevine structure is an important prerequisite for reasoning and locating the pruning points.To precisely segmentate grapevine structure,this article established a vine structure data set under natural planting conditions,and proposed a grape vine structure division method based on the U-net model.Through the comparative experiment of backbone feature extraction network and model segmentation performance,the optimal U-net model structure was obtained and its segmentation performance under different density degree targets was verified.The results showed that the precision of the U-net model with VGG 16 as the backbone feature extraction network was 93.55%,the recall was 94.15%,the mean pixel accuracy was 94.15%,and the mean intersection over union was 88.65%.Compared with traditional image segmation methods and control group model segmentation effects,it could ensure that the structure of the grape vines was complete in the context of natural planting,and the connection relationship between the structure was correct,so it was suitable for the segmentation task of grapevine structures with shade between plants,laid the foundation for achieving intelligent grape vines in winter pruning operations.

关 键 词:机器视觉 图像分割 葡萄藤结构 深度学习 

分 类 号:S126[农业科学—农业基础科学] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象