检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王亚洲[1] 佃松宜[1] 向国菲 WANG Yazhou;DIAN Songyi;XIANG Guofei(College of Electrical Engineering,Sichuan University,Chengdu 610000,China)
出 处:《中国空间科学技术(中英文)》2024年第4期130-141,共12页Chinese Space Science and Technology
基 金:四川省自然科学基金(23NSFSC1186)。
摘 要:针对垂直回收火箭在线轨迹规划的计算效率和初始敏感问题,提出一种深度神经网络辅助的在线轨迹优化算法。考虑火箭动力下降段的气动阻力,使用变分法和庞德里亚金极小值原理推导最优性条件,首次证明最优推力矢量幅值存在Bang-Bang特征。在此基础上,设计离线训练和在线优化两步求解框架。一是离线训练深度神经网络,在初值大范围波动条件下,有监督学习Bang-Bang特征的结构参数;二是在线规划最优轨迹,将训练好的深度神经网络作为辅助求解器,生成伪谱离散法的分段点,嵌入序列凸优化算法求解。该算法将最优推力的与伪谱法的分段特性有机结合,提高了有限离散点下的求解精度。仿真结果表明,该算法能有效提升在线轨迹规划的求解效率和初值适应性。It is challenging to solve the powered descent guidance problem online for its computational cost and uncertain initial conditions.An Hp-pseudospectral convex optimization algorithm assisted by deep neural network is presented.For the highly nonlinear dynamics in atmosphere,it is proved for the first time that the thrust magnitude profile has the Bang-Bang feature based on variational method and Pontryagin′s maximum principle.In the wide range of initial states,the deep neural network is applied to learn the segment feature of optimal thrust offline.Then the trained neural net is embedded in the online successive convex optimization algorithm,which combines the Hp-pseudospectral discretization with Bang-Bang feature.This learning assisted strategy leads to more accurate results with the same number of discretized nodes.Numerical simulations show that the proposed algorithm shows better computational efficiency and adaptability to initial conditions.
关 键 词:垂直回收 深度神经网络 轨迹优化 分段伪谱离散 凸优化
分 类 号:V448.1[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49