检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢明浩 张林鍹 董小刚[3] 许晋闻 XIE Minghao;ZHANG Linxuan;DONG Xiaogang;XU Jinwen(School of Electrical Engineering,Xinjiang University,Urumqi 830047,China;National Computer Integrated Manufacturing System(CIMS)Engineering Research Center,Tsinghua University,Beijing 100084,China;Baoji Power Supply Company,State Grid Shanxi Electric Power Company,Baoji 721000,China;Xi’an Power Supply Company,State Grid Shanxi Electric Power Company,Xi’an 710000,China)
机构地区:[1]新疆大学电气工程学院,乌鲁木齐830047 [2]清华大学国家计算机集成制造系统工程技术研究中心,北京100084 [3]国网陕西电力公司宝鸡供电公司,宝鸡721000 [4]国网陕西电力公司西安供电公司,西安710000
出 处:《高电压技术》2024年第8期3793-3804,I0037,I0038,I0039,共15页High Voltage Engineering
摘 要:针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kernel extreme learning machine,KELM)的组合预测模型。首先,运用OVMD获取最优分解参数,并将原始序列分解为一系列相对平稳的分量;其次,通过在鲸鱼种群中融入混沌映射、非线性收敛参数、自适应权重因子和改进的算术优化算法提出HWOA算法,并利用测试函数验证HWOA算法的优越性;然后,对各分量分别构建KELM预测模型,使用HWOA优化KELM的关键参数。最后,将各分量的预测结果叠加重构,得到最终预测结果。案例分析表明,所提模型对变压器正常和异常案例预测的决定系数分别可达97.7%和93.46%,相较于现存方法,该模型具有更好的准确性和适应性,可为电力变压器运维管理提供有利技术支撑。To address the problems that it is difficult to accurately predict the volatility and stochasticity of dissolved gas sequences in transformer oil,this paper proposes a combined prediction model based on optimal variational mode de-composition(OVMD),hybrid whale optimization algorithm(HWOA),and kernel extreme learning machine(KELM).Firstly,OVMD is applied to obtain the optimal decomposition parameters and decompose the original sequence into a se-ries of relatively smooth components.Secondly,the HWOA algorithm is proposed by incorporating chaotic mapping,nonlinear convergence parameters,adaptive weight factors and improved arithmetic optimization algorithm in the whale population,and the superiority of the HWOA algorithm is verified by using the test function.Then,the KELM prediction model is constructed for each component separately,and the key parameters of KELM are optimized by using HWOA.Finally,the prediction results of each component are superimposed and reconstructed to obtain the final prediction results.The case study shows that the decision coefficients of the model proposed in this paper for the prediction of normal and abnormal transformer cases can be up to 97.7%and 93.46%,respectively.Compared with the existing methods,the model in this paper has better accuracy and adaptability,and it can provide favorable technical supports for the operation and maintenance management of power transformers.
关 键 词:油中溶解气体 最优变分模态分解 融合型鲸鱼优化算法 核极限学习机 变压器状态预测
分 类 号:TM41[电气工程—电器] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49