检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶孝生 叶春明[1] Xiaosheng Ye;Chunming Ye(Business School,University of Shanghai for Science and Technology,Shanghai)
机构地区:[1]上海理工大学管理学院,上海
出 处:《运筹与模糊学》2024年第4期273-285,共13页Operations Research and Fuzziology
摘 要:随着机器学习技术的发展,其在工业生产质量预测中的应用日益增多。本研究针对制丝生产过程,特别是在预测出口阶段水分含量的关键质量指标上,应用并优化了XGBoost模型。通过贝叶斯优化(BO)技术对模型的关键超参数进行系统调整,并采用十折交叉验证来评估模型的稳定性和准确性。结果表明,优化后的XGBoost模型在测试集上的决定系数(R²)达到了0.959,均方根误差(RMSE)为0.02573,平均绝对误差(MAE)为0.02015,显著优于随机森林(RF)、支持向量回归(SVR)等传统机器学习模型。本研究不仅提升了制丝生产质量预测的准确性,还展示了数据驱动模型在提高工业生产效率和产品质量方面的实际应用价值,也为其他流程工业提供了参考。With the advancement of machine learning technology,its application in predicting industrial production quality has increasingly grown.This study specifically applies and optimizes the XGBoost model for predicting critical quality indicators,particularly the moisture content at the export stage of the cigarette manufacturing process.The model’s key hyperparameters were systematically ad-justed using Bayesian Optimization(BO)and evaluated for stability and accuracy through 10-fold cross-validation.The results demonstrate that the optimized XGBoost model achieved a coefficient of determination(R²)of 0.959,a root mean square error(RMSE)of 0.02573,and a mean absolute error(MAE)of 0.02015 on the test set,significantly outperforming traditional machine learning models such as Random Forest(RF)and Support Vector Regression(SVR).This study not only en-hances the accuracy of quality prediction in cigarette manufacturing but also showcases the prac-tical value of data-driven models in improving industrial production efficiency and product quali-ty,providing a reference for other process industries.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49