智能包装应用中的RFID多标签识别算法研究  

RFID Multi-tag Identification Algorithm in Intelligent Packaging Applications

在线阅读下载全文

作  者:付钰 赵曦[1] FU Yu;ZHAO Xi(Guangdong Polytechnic of Science and Technology,Guangdong Zhuhai 519000,China)

机构地区:[1]广东科学技术职业学院,广东珠海519000

出  处:《包装工程》2024年第17期209-215,共7页Packaging Engineering

基  金:广州市基础与应用基础研究项目(2023A04J0379);广东省科技厅科研平台项目(2021A118);广东省教育厅质量工程项目(JXJYGC2022GX009)。

摘  要:目的提高应用于射频识别技术的智能包装系统识别效率,解决大规模标签应用场景下的碰撞问题。方法在研究国内外相关文献中标签识别算法的性能和不足的基础上,设计一种基于映射转码的多标签识别算法。该算法将标签ID的三位识别码通过一定映射关系转为五位序列码,通过总结序列码碰撞规则实现对标签的有效识别,从而避免标签碰撞。结果仿真实验结果表明,MTMI算法的识别效率能达到56%左右。结论MTMI算法在减少查询次数、降低碰撞以及提高识别效率方面表现优异。在处理不同长度的标签ID时,算法仍然展现出优异的稳定性和可靠性。在智能包装系统中大规模应用RFID标签的场景下,MTMI算法展现出良好的应用潜力。The work aims to enhance the recognition efficiency of intelligent packaging systems applying Radio Frequency Identification(RFID)technology and address the collision problems in large-scale tag application scenarios.A Mapping and Transcoding-based Multi-tag Identification(MTMI)algorithm was designed based on a thorough study of the performance and shortcomings of tag recognition algorithms in relevant Chinese and foreign literature.This algorithm converted the three-bit identification code of the tag ID into a five-bit sequence code through a specific mapping relationship.By summarizing the sequence code collision rules,effective tag recognition was achieved,thus preventing tag collisions.Simulation experiment results indicated that the recognition efficiency of the MTMI algorithm could reach approximately 56%.The MTMI algorithm has excellent performance in reducing query times,decreasing collision time slots,and improving identification efficiency.When processing tag IDs of different lengths,the MTMI algorithm still shows good stability and reliability.In the scenario of large-scale application of RFID tags in intelligent packaging systems,MTMI algorithm has shown good application potential.

关 键 词:防碰撞 树算法 标签碰撞 查询树 

分 类 号:TB487[一般工业技术—包装工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象