基于ViT-CNN混合网络的合成孔径雷达图像船舶分类  

Synthetic aperture radar image ship classification based on ViT-CNN hybrid network

在线阅读下载全文

作  者:邵然[1,2] 毕晓君 SHAO Ran;BI Xiaojun(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;College of Electronic and Information Engineering,Harbin Vocational&Technical College,Harbin 150001,China;Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE,Minzu University of China,Beijing 100081,China;School of Information Engineering,Minzu University of China,Beijing 100081,China)

机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001 [2]哈尔滨职业技术学院电子与信息工程学院,黑龙江哈尔滨150001 [3]中央民族大学民族语言智能分析与安全治理教育部重点实验室,北京100081 [4]中央民族大学信息工程学院,北京100081

出  处:《哈尔滨工程大学学报》2024年第8期1616-1623,共8页Journal of Harbin Engineering University

基  金:国家社会科学基金重大项目(20&ZD279).

摘  要:为了解决视觉转换器模型缺乏多尺度与局部特征捕获能力,难以适应合成孔径雷达图像船舶分类任务的问题,本文提出一种混合网络模型用于合成孔径雷达图像船舶分类。利用分阶段下采样网络结构,解决了ViT无法捕获多尺度特征的问题。通过在ViT模型的3个核心模块中融入卷积结构,设计了卷积标记嵌入、卷积参数共享注意力和局部前馈网络3个模块,使得网络能够同时捕获船舶图像的全局和局部特征,进一步增强了网络归纳偏置和特征提取能力。研究表明:本文所提模型在OpenSARShip和FUSAR-Ship2个通用合成孔径雷达船舶图像数据集上,分类准确率较最优方法分别提高了2.96%和4.18%,有效地提升了合成孔径雷达图像船舶分类性能。In recent years,vision transformer(ViT)has made significant breakthroughs in the field of image classification.However,it is difficult to adapt to the task of synthetic aperture radar image ship classification due to its lack of multiscale and local feature capture capability.For this reason,this paper proposes a hybrid network model for synthetic aperture radar image ship classification.A staged downsampling network structure is designed to solve the problem that ViT is unable to capture multi-scale features.By incorporating the convolutional structure into three core modules of the ViT model,three modules,namely,convolutional token embedding,convolutional parameters sharing attention,and local feed-forward network,are designed,which enable the network to capture both global and local features of the ship images,and further enhance the network's inductive biasing and feature extraction ability.Experimental results show that the proposed model in this paper improves the classification accuracy by 2.96%and 4.18%compared with the existing optimal method on two generalized SAR ship image datasets,OpenSARShip and FUSARShip,respectively,which effectively improves the performance of SAR image ship classification.

关 键 词:视觉转换器 卷积神经网络 SAR图像 深度学习 参数共享 局部特征 全局特征 船舶图像 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象