检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:原伟 刘海涛[2] Yuan Wei;Liu Haitao(School of Foreign Languages,National University of Defense Technology,Nanjing 210039,China;School of International Studies,Zhejiang University,Hangzhou 310058,China)
机构地区:[1]国防科技大学外国语学院,南京210039 [2]浙江大学外国语学院,杭州310058
出 处:《数据分析与知识发现》2024年第7期1-13,共13页Data Analysis and Knowledge Discovery
基 金:国家社会科学基金重大项目(项目编号:20&ZD140,20AZD130);河南省哲学社会科学规划项目(项目编号:2021BYY024)的研究成果之一。
摘 要:【目的】挖掘不同语言虚假新闻的共性特征,为跨语言虚假新闻检测提供参考。【方法】以英语和俄语为例建立数据集,挖掘不同语言虚假新闻在词、句、可读性和情感层面的共性计量特征,将其用于主成分分析、K-means聚类、层次聚类和二阶聚类实验。【结果】34个共性计量特征用于真假新闻跨语言聚类效果良好,提出的19个新计量特征发挥了更大作用;发现虚假新闻有语言简化和经济化的趋势,倾向于使用短句和简单搭配传达信息,文本更易理解且包含负面表达更少。【局限】由于当前数据集限制,未能找到同一主题的真假新闻样本进行平行测试。【结论】不同语言的虚假新闻的确存在同语种无关的共性特征可用于自动聚类,为跨语言虚假新闻检测和甄别研究提供了借鉴。[Objective]This study examines the common features of fake news in different languages to provide a reference for cross-language fake news detection.[Methods]Using English and Russian as examples,we established datasets to extract common quantitative features of fake news across different languages at word,sentence,readability,and sentiment levels.Then,we used these features in principal component analysis,K-means clustering,hierarchical clustering,and second-order clustering experiments.[Results]The 34 common quantitative features demonstrated good performance in cross-language clustering of real and fake news.The proposed 19 quantitative features played a more significant role.The study found a tendency for fake news to exhibit language simplification and economization.It favors short sentences and simple collocations to convey information,making the text easier to understand and containing fewer negative expressions.[Limitations]The current dataset's limitations made parallel testing with true and false news on the same topic impossible.[Conclusions]Fake news in different languages shares common language-independent features to be used for automatic clustering,providing insights for cross-language fake news detection research.
分 类 号:TP393[自动化与计算机技术—计算机应用技术] G250[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117