检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林书臣 魏德健[1] 张帅[1] 曹慧[1] 杜昱峥 Lin Shuchen;Wei Dejian;Zhang Shuai;Cao Hui;Du Yuzheng(College of Intelligence and Information Engineering,Shandong University of Traditional Chinese Medicine,Jinan 250355,Shandong,China)
机构地区:[1]山东中医药大学智能与信息工程学院,山东济南250355
出 处:《激光与光电子学进展》2024年第14期51-68,共18页Laser & Optoelectronics Progress
基 金:国家自然科学基金(82374620,81973981);山东省自然科学基金(ZR2020MH360);山东省中医药科技项目(2020M006)。
摘 要:膝关节骨关节炎是一种常见的创伤性、退行性骨关节疾病,膝骨关节各结构的损伤均可诱发不同程度的病变。磁共振图像是膝关节骨关节炎临床诊断的重要依据。目前,运用深度学习模型提取膝关节图像中的深度特征,实现膝关节各结构的分割与病变识别,进而完成膝关节骨关节炎的辅助诊断是现阶段骨关节疾病辅助诊断领域的研究热点。首先讨论膝关节各类成像技术的优缺点,重点概述磁共振多序列成像技术;然后,详述深度学习模型用于膝关节软骨、半月板等组织结构病变诊断的现状;最后,针对现有识别模型存在的问题,对知识蒸馏、联邦学习两种模型的优化技术进行介绍,并对未来的研究方向进行展望。Knee osteoarthritis is a common traumatic and degenerative bone and joint disease that can induce various pathological changes due to injuries to various knee structures.Magnetic resonance imaging plays a crucial role in the clinical diagnosis of knee osteoarthritis.Currently,the use of deep learning models to extract depth features from knee joint images and achieve segmentation and lesion recognition of various knee joint structures has become a research hotspot in the field of auxiliary diagnosis of knee joint diseases.First,this study discussed the advantages and disadvantages of various imaging techniques for the knee joint,focusing on magnetic resonance multisequence imaging technology.Then,it highlighted current status of deep learning models used for diagnosing knee joint cartilage,meniscus,and other tissue structural lesions.Furthermore,it addressed the limitations of existing recognition models and introduced two model optimization technologies:knowledge distillation and federated learning.Finally,this study concluded by outlining future research directions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222