检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯冠元 张健 苗语[1] 蒋振刚[1] 师为礼[1] 金鑫 Feng Guanyuan;Zhang Jian;Miao Yu;Jiang Zhengang;Shi Weili;Jin Xin(College of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130012,Jilin,China;Key Laboratory of Airborne Optical Imaging and Measurement,Chinese Academy of Sciences,Changchun 130033,Jilin,China)
机构地区:[1]长春理工大学计算机科学技术学院,吉林长春130012 [2]中国科学院航空光学成像与测量重点实验室,吉林长春130033
出 处:《激光与光电子学进展》2024年第14期279-290,共12页Laser & Optoelectronics Progress
基 金:吉林省自然科学基金(20210101170JC)。
摘 要:单一数据源信息不充分、传感器本身及传感器之间的标定存在误差导致室内地图创建不精准,针对这一问题,本文提出基于多源数据融合的室内平面图构建算法,该算法利用RGB-D传感器获取室内场景中的三维结构特征,并将其融入激光雷达点云中,从而构建具有三维结构特征的室内平面地图。在该算法中,先将RGB-D传感器中深度相机采集到的图像转换为伪激光雷达点云;然后,使用基于多项式函数拟合的过滤器对伪激光雷达点云进行分层和校准,并对激光雷达点云和伪激光雷达点云进行融合;最后,利用融合后的点云数据创建室内二维平面地图。实验结果表明,本文提出的点云分层过滤和校准方法可以有效融合激光雷达点云和伪激光雷达点云,融合点云构建的室内二维平面地图精度明显提高。To address the inaccuracies of indoor map construction due to insufficient information derived from single data sources and errors in multisensor calibration,an indoor floor plan construction algorithm is proposed based on multisource data fusion.The RGBD sensor was used to obtain 3D structural features in indoor scenes,and the features were then integrated into LiDAR point clouds in the algorithm.Accordingly,an indoor floor plan with 3D structural features was constructed.In the algorithm,images collected by a depth camera in the RGBD sensor were first converted into pseudoLiDAR point clouds.Next,a filter based on polynomial function fitting was used to stratify and calibrate the pseudoLiDAR point clouds,and then the LiDAR and pseudoLiDAR point clouds were fused.Finally,the fused point cloud data were used to create the indoor 2D floor plan.Experimental results show that the proposed pointcloud hierarchical filtering and calibration method effectively fuses the LiDAR and pseudoLiDAR point clouds,and the accuracy of the indoor 2D floor plan constructed by the fusion point clouds is significantly improved.
关 键 词:激光雷达 RGB-D传感器 数据融合 分层过滤 点云校准
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229