检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王义国 林峰 李琦 刘钰淇 胡贵洋 孟祥宇 WANG Yiguo;LIN Feng;LI Qi;LIU Yuqi;HU Guiyang;MENG Xiangyu(Guangdong Energy Group Co.,Ltd.,Guangzhou 510620,China;Guangdong Yuedian Qingxi Power Generation Co.,Ltd.,Meizhou 514200,China;School of Electrical Engineering,Southwest Jiaotong University,Chengdu 610000,China)
机构地区:[1]广东省能源集团有限公司,广东广州510620 [2]广东粤电青溪发电有限责任公司,广东梅州514200 [3]西南交通大学电气工程学院,四川成都610000
出 处:《电力系统保护与控制》2024年第17期161-167,共7页Power System Protection and Control
基 金:四川省青年科技创新研究团队项目“高铁电力牵引系统电气安全防护”(2016TD0012)。
摘 要:随着新能源发电和众多电动汽车充电桩等非线性设备并网运行,电网电能质量问题日渐凸显。现有解决方案在电能质量扰动分类上流程复杂,且在处理扰动信号时分类准确率偏低。为应对这一挑战,引入了TCN-LSTM混合模型,融合了时域卷积网络(temporal convolutional network,TCN)和长短时记忆网络(longshort-term memory,LSTM)。其中,TCN专注于捕捉时序数据的局部特性,而LSTM负责挖掘长期依赖关系,两者结合能够有效捕捉信号的局部特征和全局关系。为验证模型性能,对14种加入不同信噪比白噪声的电能质量扰动信号进行分类测试。结果表明,TCN-LSTM模型展现出较强的抗噪性能,并在与现有深度网络模型的对比中展现了更高的分类准确度。The increasing integration of non-linear devices such as new energy generation and a large number of electric vehicle charging stations into the power grid has led to increasingly prominent power quality problems.However,current methods face challenges in the classification of power quality disturbances,with complex steps and low accuracy when considering disturbance signals.To address these issues,this paper proposes the TCN-LSTM model,which combines a temporal convolutional network(TCN)with long short-term memory(LSTM).The TCN network excels in capturing local features of time series,while the LSTM is proficient in digging long-term dependencies within the time series.The fusion of both enables the model to effectively capture both local characteristics and global relationships of the signals.To validate the model’s performance,a classification test is conducted on 14 types of power quality disturbance signals with varying signal-to-noise ratios.Finally,the results demonstrate that the TCN-LSTM model exhibits strong noise resistance.In comparison to existing deep network models,the model proposed in this paper achieves higher classification accuracy.
关 键 词:电能质量 扰动分类 TCN-LSTM模型 时序数据 抗噪性能
分 类 号:TM711[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195