检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:范麟龙 宋子健 邓龙昕 许雨锶 陈锐[1,2] FAN Linlong;SONG Zijian;DENG Longxin;XU Yusi;CHEN Rui(Department of Urology,The First Affiliated Hospital of Naval Medical University(Second Military Medical University),Shanghai 200433,China;Department of Urology,Renji Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200127,China;Department of Urology,The Second Affiliated Hospital of Naval Medical University(Second Military Medical University),Shanghai 200003,China)
机构地区:[1]海军军医大学(第二军医大学)第一附属医院泌尿外科,上海200433 [2]上海交通大学医学院附属仁济医院泌尿科,上海200127 [3]海军军医大学(第二军医大学)第二附属医院泌尿外科,上海200003
出 处:《海军军医大学学报》2024年第9期1141-1146,共6页Academic Journal of Naval Medical University
基 金:国家自然科学基金面上项目(82272905);上海市青年科技启明星计划(21QA1411500);上海市自然科学基金面上项目(22ZR1478000)。
摘 要:人工智能(AI)在前列腺癌(PCa)病理诊断、影像学诊断、预后预测、分子分型等方面具有重要意义和远大前景。本文主要关注AI分析病理切片在PCa病理诊断及分子分型中的应用进展,简要介绍了AI在穿刺病理诊断和Gleason分级、切除术后病理的诊断和分级、基于病理切片预测PCa患者预后中的应用。在穿刺病理诊断和Gleason分级方面,AI已经和普通病理医师表现不相上下;在切除术后病理的诊断和分级方面,AI可以对肿瘤进行精准分级与评分;在PCa患者预后预测方面,AI可以直接从病理组织切片中提取相关预后信息,预测PCa患者的术后情况。此外,AI还可以预测PCa患者的基因突变,通过分析病理切片得出基因突变的概率。Artificial intelligence(AI)has important significance and great promise in the pathological diagnosis,imaging diagnosis,prognosis prediction,and molecular subtyping of prostate cancer(PCa).This review focuses on the progress of AI for the diagnosis and molecular classification of PCa,and briefly introduces the application of AI in the pathological diagnosis of needle biopsy and Gleason grading,pathological diagnosis and grading after prostatectomy,and prognosis prediction of PCa patients based on pathological sections.For the pathological diagnosis of needle biopsy and Gleason grading,AI has already comparable to general pathologists;for the pathological diagnosis and grading after prostatectomy,AI can accurately grade and classify tumors;and for the prognosis prediction of PCa patients,AI can directly extract relevant prognostic information from pathological tissue sections for prognosis prediction.In addition,AI can also predict gene mutations in PCa patients and suggest the probability of gene mutation by analyzing the pathological sections.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.4.109