检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭瑞斌 王能 陈谢沅澧 于清华 周宗潭[1] 卢惠民 GUO Ruibin;WANG Neng;CHEN-XIE Yuanli;YU Qinghua;ZHOU Zongtan;LU Huiming(College of Intelligence Science and Technology,National University of Defense Technology,Changsha 410073,China)
机构地区:[1]国防科技大学智能科学学院,湖南长沙410073
出 处:《机器人》2024年第5期534-543,共10页Robot
基 金:国家自然科学基金(U22A2059);湖南省自然科学基金(2021JC0004,2021JJ40677)。
摘 要:针对复杂动态环境中基于激光雷达数据的运动目标分割法实时性较差、逐点分割准确性较低等问题,提出一种基于实例增强的激光雷达运动目标分割方法。首先,将3维激光雷达点云转换为2维鸟瞰图,通过计算当前点云帧与历史点云帧之间的鸟瞰图残差实现运动特征的快速提取。然后结合运动特征与3维点云空间特征提取实例特征,利用实例信息对属于同一实例的点云进行一致性运动分割,提高激光雷达逐点运动分割准确性。利用开源数据集SemanticKITTI对该方法进行了测试,实验结果表明,本文方法的交并比指标为72.2%;消融实验表明,实例信息增强后交并比指标较基础模型提高了8.7%,运动目标分割的实时性和准确性较当前先进方法都有更优或相当的表现,验证了利用实例信息增强法来完成多感知任务的有效性。Aiming at the problem of poor real-time performance and low point-wise segmentation accuracy in LiDARbased moving-object segmentation for robots in a complex dynamic environment,a moving-object segmentation method based on instance enhancement on LiDAR data is proposed.Firstly,motion features are extracted quickly by calculating the residuals between the current frame and historical frames of the 2D BEV(bird's eye view)images,which are converted from the 3D LiDAR point clouds.Then,instance features are extracted by integrating the motion features with the spatial characteristics of the 3D point cloud.Using the instance information,consistent motion segmentation is achieved for point clouds belonging to the same instance,and thus improving the accuracy of LiDAR-based moving-object point-wise segmentation.Experiments are carried out on the open-source dataset SemanticKITTI,and the experimental results show that the proposed method achieves an IoU(intersection over union)score of 72.2%.The ablation experiments indicate that the IoU score is increased by 8.7%over the baseline model after enhancement with instance information.The real-time performance and the moving-object segmentation accuracy are superior or comparable to the current advanced methods,validating the effectiveness of utilizing instance information enhancement for multi-perception tasks.
关 键 词:激光雷达(LiDAR) 运动目标分割 实例增强 多任务网络
分 类 号:TN958.98[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.150.27