检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:包培楠 王维红[1] 李芷薇 张斯奇 BAO PeiNan;WANG WeiHong;LI ZhiWei;ZHANG SiQi(School of Earth Sciences,Northeast Petroleum University,Daqing 163318,China)
出 处:《地球物理学进展》2024年第4期1474-1482,共9页Progress in Geophysics
基 金:国家青年科学基金项目(42304114);黑龙江省自然科学基金项目(LH2023D014);国家自然科学基金面上项目(42274167);国家基金培育基金项目(2023GPL-12)联合资助。
摘 要:地震资料层间多次波压制一直是油气勘探领域的研究热点和难点.地震波经过地下强反射界面会形成能量较强的层间多次波,严重影响有效波的识别,使地震成像的真实性及可靠性降低.基于深度学习的多次波压制方法能够通过组合低层特征形成更加抽象的高层特征以更好的发现数据的有效信息,多次波分离精度较高.本文针对传统卷积神经网络训练成本高的问题引入注意力机制,提出了基于注意力机制的层间多次波压制方法,以降低神经网络模型训练成本.数据测试表明,该方法不受传统层间多次波压制方法局限性的影响,可以避免地震数据的规则化处理,降低了计算负担,具有重要的理论与工业应用价值.Internal multiple suppression of seismic data has been a research hotspot and difficulty in the field of oil and gas exploration.The strong reflection interface in the subsurface will form internal multiples with strong energy,which seriously affect the identification of primaries.It also can reduce the authenticity and reliability of seismic imaging.The deep learning-based multiple suppression method can form more abstract high-level features by combining the low-level features to better discover the effective features of the data,and the multiple separation accuracy is high.In this paper,the attention mechanism is introduced for the problem of high training cost of traditional convolutional neural network,and an internal multiple suppression method based on the attention mechanism is proposed to reduce the training cost of neural network model.The data test shows that the method is not affected by the limitations of the traditional internal multiple suppression method and can avoid the regularization of seismic data,thus reducing the computational burdens and improving the computational efficiency,which has important theoretical and industrial application value.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188