检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李煜 杨静飞 张鸿生 李刚[3] 陈杰[4] LI Yu;YANG Jingfei;ZHANG Hongsheng;LI Gang;CHEN Jie(Beijing University of Technology,Faculty of Information Technology,Bejing 100124,China;Hong Kong University,Department of Geography,Hong Kong 999077,China;School of Surveying and Mapping Science and Technology,Sun Yat-sen University/Guangdong Laboratory of Southern Ocean Science and Engineering(Zhuhai),Zhuhai 519082,China;Beihang University,School of Electronics and Information Engineering,Beijing 100037,China)
机构地区:[1]北京工业大学信息学部,北京100124 [2]香港大学地理系,中国香港999077 [3]中山大学测绘科学与技术学院/南方海洋科学与工程广东省实验室(珠海),珠海519082 [4]北京航空航天大学电子信息工程学院,北京100037
出 处:《遥感学报》2024年第8期1835-1853,共19页NATIONAL REMOTE SENSING BULLETIN
基 金:国家重点研发计划(编号:2016YFB0501501);国家自然科学基金(编号:42376178);北京市教委科技计划(编号:KM202110005024)。
摘 要:作为遥感信息提取和分析的重要环节,遥感影像地物分类一直是相关研究领域的热点之一。由于地面目标特性的复杂性和遥感成像手段的多样性,遥感影像的准确分类有赖于对影像特点的深入理解及地物先验知识的充分利用。近些年来,随着合成孔径雷达SAR (Synthetic Aperture Radar),特别是极化SAR技术的进步,SAR遥感地物分类领域的研究有了显著发展。本文旨在对极化SAR遥感地物分类的研究进展进行综述。在介绍SAR遥感基本理论,星载SAR主要数据源的基础上,介绍基于极化分解的分类方法,基于经典机器学习的极化SAR地物分类方法,基于深度学习的极化SAR地物分类方法,融合光学和SAR影像的遥感地物分类方法以及基于紧缩极化SAR的地物分类。然后,介绍极化SAR在海面溢油探测、舰船检测、海岸线提取、土地利用分类、海冰和冰盖分类等地物分类任务上的研究进展。最后,对极化SAR地物分类研究的未来发展进行展望。Remote sensing technology enables us to monitor the Earth from space and sense the rhythm of rivers, lakes, and seas and the pulse of social and economic development in real time. It also facilitates effective early warning, prevention, and evaluation of natural disasters, in which SAR technology plays an increasingly important role. Remote sensing image classification is an important step of remote sensing image analysis, and it has always been one of the hot spots in related research fields. Owing to the complexity of ground target characteristics and the diversity of remote sensing imaging techniques, the accurate interpretation of remote sensing images requires a deep understanding of the characteristics of the image and fully utilizing the prior knowledge of ground objects. In recent years, the development of Synthetic Aperture Radar(SAR), especially polarimetric SAR technology, has facilitated the rapid growth in the research on remote sensing object classification. In this study, the research progress of polarimetric SAR remote sensing image classification is reviewed. This study firstly introduces the basic theory of SAR remote sensing and the main data sources of spaceborne SAR. Then, it introduces the decomposition of polarimetric SAR data, the classical machine learning algorithms for polarimetric SAR, the deep learning-based algorithms, the methods of fusing optical and SAR images, and the classification algorithms based on compact polarimetric SAR. Next, this study introduces the research progress of polarimetric SAR image classification for marine oil spill detection, ship detection, coastline extraction, land use classification, and sea ice/ice cap classification. Finally, the development trend of polarimetric SAR image classification is prospected. From the perspective of the authors, the development of polarimetric SAR classification has the following trends:(1) from single polarimetric to multi-and compact polarimetric SAR modes;(2) from medium/low resolution, small range to high resolution, lar
关 键 词:极化SAR 遥感 地物分类 多源信息融合 特征提取 机器学习 目标检测 散射特性
分 类 号:TN95[电子电信—信号与信息处理] P2[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49