基于改进小波阈值的数据采集系统降噪研究  被引量:1

Research on noise reduction in data acquisition system based on improved wavelet thresholding

在线阅读下载全文

作  者:刘玉玉 李杰[1,2] 马喜宏[1,2] 孙宁 王涛 高屾林 LIU Yuyu;LI Jie;MA Xihong;SUN Ning;WANG Tao;GAO Shenlin(Key Laboratory of National Defense Science and Technology of Electronic Testing Technology,North University of China,Taiyuan 030051,China;Key Laboratory of Instrument Science and Dynamic Testing,Ministry of Education,North University of China,Taiyuan 030051,China;Beijing Institute of Remote Sensing Equipment,Beijing 100080,China;Huaihai Industrial Group Co.,Ltd.,Changzhi 046000,China)

机构地区:[1]中北大学电子测试技术国防科技重点实验室,山西太原030051 [2]中北大学仪器科学与动态测试教育部重点实验室,山西太原030051 [3]北京遥感设备研究所,北京100080 [4]淮海工业集团有限公司,山西长治046000

出  处:《电子设计工程》2024年第19期124-128,134,共6页Electronic Design Engineering

基  金:国家自然科学基金(61973280)。

摘  要:在数据采集过程中,噪声和干扰的存在严重影响了数据的准确性。为了获得质量较高的数据,减少噪声的影响,该文提出一种基于遗传算法的小波阈值函数去噪方法,并设计以FPGA为主控的数据采集系统进行了多次实验。实验结果表明,经改进算法处理过的数据信噪比达到了芯片手册中所规定的典型值大小。同时,相比传统的阈值函数去噪方法,将新算法应用于采集到的数据,其信噪比提高了7.0248 dB,均方根误差降低了0.1675,表现出了较好的去噪性能,具有较高的工程应用价值。During the data acquisition process,the presence of noise and interference significantly affects the accuracy of the data.To enhance the data quality and minimize the impact of noise on the analysis results,this study proposes a genetic algorithm-based wavelet threshold function denoising method and designs a data acquisition system controlled by FPGA for multiple experimental tests.The experimental results show that the data processed by the improved algorithm achieved the typical value of signal-to-noise ratio as specified in the chip manual.In comparison to traditional threshold-based denoising methods,applying the new algorithm to the collected data has improved the signal-to-noise ratio by 7.0248 dB and reduced the root mean square error by 0.1675.This demonstrates excellent denoising performance,making it highly valuable for engineering applications.

关 键 词:数据采集系统 小波阈值去噪 遗传算法 信噪比 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象