融合自适应感受野的目标检测算法  

Object detection algorithm combining adaptive receptive fields

在线阅读下载全文

作  者:黄路 李泽平[1] 杨文帮 赵勇[2] HUANG Lu;LI Ze-ping;YANG Wen-bang;ZHAO Yong(College of Computer Science and Technology,State Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China;Shenzhen Graduate School,Peking University,Shenzhen 518055,China)

机构地区:[1]贵州大学公共大数据国家重点实验室计算机科学与技术学院,贵州贵阳550025 [2]北京大学深圳研究生院,广东深圳518055

出  处:《计算机工程与设计》2024年第9期2669-2675,共7页Computer Engineering and Design

基  金:国家自然科学基金项目(61462014);贵州省青年科技人才成长基金项目(黔教合KY字[2018]411)。

摘  要:针对不同尺度的目标容易造成模型的特征提取和尺度变化的适应性问题,提出一种融合自适应感受野的目标检测算法。通过对特征图采用拆分、卷积和融合的方式构造通道自适应感受野模块,以提取不同尺度的感受野,提高对尺度变化的适应能力;在网络结构中引入通道自适应感受野模块和RepVGG模块,采用FC模块(concatenate with convolutions)过滤冗余特征,强化模型的特征提取能力;采用Alpha-CIOU损失和知识蒸馏优化训练,提高算法的检测能力。在Pascal VOC和MS COCO数据集上的实验结果表明,该算法在尺度变化、精度和速度等方面取得了优秀的性能。To solve the problem that objects of different scales are easy to cause the feature extraction of the model and the adap-tability of scale change,an object detection algorithm based on adaptive receptive field was proposed.The channel adaptive receptive field module was constructed using splitting,convolution and fusion on the feature map to extract receptive fields of different scales and improve the adaptability to scale changes.The channel adaptive receptive field module and RepVGG module were introduced into the network structure,and the FC module(concatenate with convolutions)was used to filter redundant features to enhance the feature extraction ability of the model.The Alpha-CIOU loss and knowledge distillation were used to optimize the training to improve the detection ability of the algorithm.Experimental results on Pascal VOC and MS COCO datasets show that the proposed algorithm achieves excellent performance in terms of the scale change,accuracy and speed.

关 键 词:特征提取 尺度变化 目标检测 通道自适应感受野 冗余特征 边框损失 知识蒸馏 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象