检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭跃楠 杜福嘉[1,2] 黄康 王二朋[1,2,3] GUO Yue-nan;DU Fu-jia;HUANG Kang;WANG Er-peng(National Astronomical Observatories Nanjing Institute of Astronomical Optics&Technology,Chinese Academy of Sciences,Jiangsu Nanjing 210042,China;CAS Key Laboratory of Astronomical Optics&Technology,Nanjing institute ofAstronomical Optics&Technology,Jiangsu Nanjing 210042,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院国家天文台南京天文光学技术研究所,江苏南京210042 [2]中国科学院天文光学技术重点实验室(南京天文光学技术研究所),江苏南京210042 [3]中国科学院大学,北京100049
出 处:《机械设计与制造》2024年第9期169-174,共6页Machinery Design & Manufacture
基 金:国家自然科学基金(U1831111);江苏省自然科学基金(BK20181507);中国科学院天文台站设备更新及重大仪器设备运行专项经费支持。
摘 要:滚动轴承的自转、部件相互作用和强干扰使测量的振动信号复杂,而滚动轴承的早期损伤类故障特征信息弱小,导致故障特征难以有效提取从而影响故障诊断,因此提出一种敏感模态筛选方法来提高故障诊断的正确性。采用变分模态分解算法对信号进行自适应分解,提取信号的局部特征。基于排列熵的不变性和对冲击信号的敏感性,提出故障因子的敏感模态筛选方法对信号进行重构,抑制振动信号中的干扰和噪声。通过仿真和实验对所提方法进行了验证,结果表明,相比其他处理方法,所提方法信噪比提高了60.5%,误差降低了52.6%,同时故障诊断正确率提高了24.3%,说明了该方法的有效性。The vibration signals measured from a rolling bearing are complicated because of bearing rotation,component interac⁃tion and strong interference.It is difficult to extract fault features effectively for incipient fault because the features for incipient fault are small.The accuracy of fault diagnosis will be decreased.Therefore,a sensitive mode selection method was proposed to im⁃prove the accuracy of fault diagnosis.Firstly,Variational Mode Decomposition(VMD)algorithm was used to adaptively decom⁃pose the vibration signal and extract the local signal features.Secondly,based on the invariance of permutation entropy and its sen⁃sitivity to impulse signal,a sensitive mode selection method of fault factors was proposed to reconstruct the signal.The method could suppress the interference and noise in the vibration signals.Finally,comparison with other preprocessing methods using simulation and experiment has also been investigated.The simulation results show that the signal-to-noise ratio is improved by 60.5%and the root mean square error is reduced by 52.6%.The experimental results show the accuracy of fault diagnosis is in⁃creased by 24.3%.These results have confirmed that the fault factor method provides an effective method for fault diagnosis of roll⁃ing bearings.
关 键 词:滚动轴承 VMD 模态筛选 排列熵 故障因子 故障诊断
分 类 号:TH16[机械工程—机械制造及自动化] TH133.33
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.160.142