基于支持向量回归机的航空飞机零部件异常检测研究  

Research on Abnormal Detection of Aircraft Components Based on Support Vector Regression Machine

在线阅读下载全文

作  者:魏柏林 周莹 Wei Bolin;Zhou Ying(AVIC Xi'an Aircraft Industry Group Co.,Ltd.,Xi'an,China)

机构地区:[1]中航西安飞机工业集团股份有限公司,陕西西安

出  处:《科学技术创新》2024年第22期197-200,共4页Scientific and Technological Innovation

摘  要:为优化航空飞机零部件异常检测效果,准确地检测识别出航空飞机零部件的异常状态,利用支持向量回归机,开展了零部件异常检测研究。首先,实时采集飞机零部件的相关数据,提取零部件特征;其次,基于支持向量回归机,构建检测模型,判断数据点是否为异常值;在此基础上,利用劣化度,对飞机零部件的异常情况作出检测,识别零部件的健康状态。实验结果表明,提出方法应用后,零部件异常检测结果与实际情况更加接近,能够更准确地检测识别出航空飞机零部件的异常状态。In order to optimize the anomaly detection effect of aviation aircraft components and accurately detect and identify the abnormal status of aviation aircraft components,support vector regression machine was used to carry out research on component anomaly detection.Firstly,real-time collection of relevant data on aircraft components and extraction of component features;Secondly,based on support vector regression,a detection model is constructed to determine whether the data points are outliers;On this basis,using degradation degree,abnormal situations of aircraft components are detected to identify their health status.The experimental results show that after the proposed method is applied,the abnormal detection results of components are closer to the actual situation,and can more accurately detect and identify the abnormal status of aviation aircraft components.

关 键 词:支持向量回归机 航空 零部件 飞机 异常 检测 

分 类 号:V231.3[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象