基于贝叶斯网络的高铁塞拉门故障诊断研究  

Research on Fault Diagnosis of Sliding Plug Door of High-speed Railway Based on Bayesian Network

在线阅读下载全文

作  者:杨少伟 黄巧亮[1] YANG Shaowei;HUANG Qiaoliang(School of Electronic and Information,Jiangsu University of Science and Technology,Zhenjiang 212100)

机构地区:[1]江苏科技大学电子信息学院,镇江212100

出  处:《计算机与数字工程》2024年第7期2025-2029,共5页Computer & Digital Engineering

摘  要:塞拉门系统是高铁的重要组成部分,为了解决目前塞拉门系统故障诊断效率低、准确性差等问题,提出了一种基于贝叶斯网络的高铁塞拉门故障诊断方法。首先通过对塞拉门历史故障数据进行分析,构建出塞拉门的故障树模型,详细说明故障树模型向贝叶斯网络转化过程,主要包括有向无环图和条件概率表两方面内容,采用联合树算法进行网络推理,通过诊断推理完成对高铁塞拉门系统的故障诊断分析,从而快速确定故障模式与故障点。实验分析结果验证了该方法的可行性。Sliding plug door system is an important part of high-speed railway.In order to solve the problems of low efficiency and poor accuracy of current sliding plug door system fault diagnosis,a fault diagnosis method for high-speed railway sliding plug door based on Bayesian network is proposed.First,by analyzing the historical fault data of the sliding plug door,the fault tree model of the sliding plug door is constructed,and the conversion process of the fault tree model to the Bayesian network is explained in de⁃tail.It mainly includes the directed acyclic graph and the conditional probability table.The joint tree algorithm performs network rea⁃soning,and completes the fault diagnosis analysis of the high-speed rail sliding plug door system through diagnostic reasoning,so as to quickly determine the failure mode and point of failure.The experimental analysis results verify the feasibility of the method.

关 键 词:贝叶斯网络 故障诊断 塞拉门 联合树 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象