基于深度学习的服装类商品特征识别研究  

Research on Feature Recognition Technology of Clothing Products Based on Deep Learning

在线阅读下载全文

作  者:潘淑君 Shujun Pan(PBC School of Finance,Tsinghua University)

机构地区:[1]清华大学五道口金融学院

出  处:《经济管理学刊》2024年第3期237-276,共40页Quarterly Journal of Economics and Management

摘  要:网络购物目前已成为主流的消费方式之一,各大购物网站及APP上存在数以亿计的待售商品,这些商品往往以图片或文字描述的形式展现在消费者面前。消费者搜索关键词、浏览商品图片,希望能够更加方便快捷地从海量商品中挑选出适合自己的商品,因此商品图片和商品的标题文字描述就成为待售商品的核心“特征”。因此,平台和商家针对所售产品,如果能够生成合适准确的商品描述,更全面、更准确地覆盖商品特征,将会提高购物环节的效率、提升消费者满意度,为平台和商家带来潜在的利益提升。本文考虑建立基于深度学习进行图像识别的相关模型,根据商品图片实现商品在不同标签维度下的分类,并将这些不同维度的标签进行组合,形成商品描述。本文选择的商品领域为服装类,数据来自于真实购物网站的商品图片和商品描述,首先将输入的图片进行预处理,然后构建多种卷积神经网络模型进行尝试,提取图片特征,并根据提取到的图片特征完成判别,最后在模型构建的基础上设计出相应的产品。借鉴本文研究,商家可以实现对于所出售商品的规范管理,为商品提供合理规范的特征描述,简化运营操作;消费者可以通过标签选择,更加方便快捷地挑选到所需要的商品;监管平台可以针对不同标签分类的商品实现动态监测,有利于构建良好的购物生态环境。With the continuous development of Internet technology,online shopping has already permeated various aspects of our daily lives,profoundly changing individual experiences and offering unparalleled convenience of traditional commerce.Several leading e-commerce platforms in China have a large number of users,continuously expanding the types of online products,covering various aspects of our lives.During the online shopping process,consumers input or click on the types and features of products they are interested in,browse the corresponding product pages,and obtain a series of information about the products.This information often includes product images,descriptions,prices,versions,etc.Consumers then integrate the information from various products to make decisions on whether to purchase or not.This information also presents new opportunities for product marketing.In this context,e-commerce platforms have gradually become centralized pools of massive data,encompassing comprehensive data information about merchants,users,products,logistics,and so on.If these data can be harnessed to unleash greater value in business scenarios,it will undoubtedly empower various aspects of online shopping,providing a new experience for merchants,e-commerce platforms,and consumers.E-commerce platforms possess a vast amount of product images with high data dimensions,carrying rich information that can visually present product details,making it convenient for both merchants and users to sell and buy goods.Image data has become the primary content carrier in the current e-commerce sales process,playing a crucial role in how consumers perceive and understand the products being sold.Meanwhile,textual descriptions also remain key in conveying information about the functionality and effects of products.Therefore,if a connection can be established between physical product images and textual information through various methods,automatically generating product tags and basic descriptions based on product images,it can greatly facilitate the mana

关 键 词:深度学习 卷积神经网络 商品分类 商品标签 

分 类 号:O213[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象