检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王传彬 李翠平 曹锋 董江宁 吴兴旺[1] WANG Chuanbin;LI Cuiping;CAO Feng;DONG Jiangning;WU Xingwang(Department of Radiology,the First Affiliated Hospital of Anhui Medical University,Hefei 230022,China;Department of Radiology,the First Affiliated Hospital of USTC,Division of Life Sciences and Medicine,University of Science and Technology of China,Hefei 230031,China)
机构地区:[1]安徽医科大学第一附属医院放射科,安徽合肥230022 [2]中国科学技术大学附属第一医院(安徽省立医院)西区放射科,安徽合肥230031
出 处:《实用放射学杂志》2024年第8期1238-1242,共5页Journal of Practical Radiology
基 金:安徽省自然科学基金面上项目(2308085MH241)。
摘 要:目的探讨基于临床及CT放射组学特征构建的联合预测模型鉴别非典型肺错构瘤(APH)和非典型肺腺癌(ALA)的价值。方法回顾性选取经病理证实的APH和ALA患者290例。安徽医科大学第一附属医院的250例患者按照7︰3的比例随机分为训练集(APH 91例,ALA 84例)和内部验证集(APH 39例,ALA 36例),中国科学技术大学附属第一医院的40例患者作为外部验证集(APH 21例,ALA 19例)。利用筛选出的临床-CT特征和放射组学特征分别构建独立模型及多因素logistic回归联合模型,并绘制列线图。采用受试者工作特征(ROC)曲线和DeLong检验对模型的性能进行评价与比较。结果利用3个临床-CT特征和4个放射组学特征建立的联合模型在训练集中的曲线下面积(AUC)为0.980,均高于临床-CT模型(AUC=0.885,P<0.001)及放射组学模型(AUC=0.975,P=0.042)。联合模型在内部验证集和外部验证集的AUC(0.963 vs 0.917)分别高于临床-CT模型(0.858 vs 0.774)及放射组学模型(0.953 vs 0.897)。结论基于临床及CT放射组学特征构建的联合预测模型能够提高对APH和ALA的鉴别诊断能力。Objective To explore the value of combined prediction model based on clinical and CT radiomics features in discriminating atypical pulmonary hamartoma(APH)from atypical lung adenocarcinoma(ALA).Methods A total of 290 patients with APH and ALA confirmed by pathology were retrospectively selected.250 patients from the First Affiliated Hospital of Anhui Medical University were randomly assigned into a training set(APH=91,ALA=84)and an internal validation set(APH=39,ALA=36)at a ratio of 7︰3,and other 40 patients from the First Affiliated Hospital of USTC were assigned as an external validation set(APH=21,ALA=19).The independent model and multivariate logistic regression combined model were constructed using the selected clinical-CT features and radiomics features,respectively,and a nomogram was drawn.Receiver operating characteristic(ROC)curve and DeLong test were used to evaluate and compare the performances of the models.Results The area under the curve(AUC)of the combined model established by 3 clinical-CT features and 4 radiomics features in the training set was 0.980,which was higher than that of clinical-CT model(AUC=0.885,P<0.001)and radiomics model(AUC=0.975,P=0.042).The AUC of the combined model in the internal and external validation sets(0.963 vs 0.917)were also higher than those of clinical-CT model(0.858 vs 0.774)and radiomics model(0.953 vs 0.897),respectively.Conclusion The combined prediction model based on clinical and CT radiomics features can improve the differential diagnosis ability of APH and ALA.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38