检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:温佳祺 杨叙宁 李金硕 丁振君[1,3] 董芳 WEN Jiaqi;YANG Xuning;LI Jinshuo;DING Zhenjun;DONG Fang(School of Quality and Technical Supervision,Hebei University,Baoding 071002,China;Engineering Research Center of Zero-carbon Energy Bulidings and Measurement Techniques,Ministry of Education,Baoding 071002,China;National and Local Joint Engineering Research Center for Measuring Instruments and Systems,Baoding 071002,China)
机构地区:[1]河北大学质量技术监督学院,河北保定071002 [2]零碳能源建筑与计量技术教育部工程研究中心,河北保定071002 [3]计量仪器与系统国家地方联合工程研究中心,河北保定071002
出 处:《河北大学学报(自然科学版)》2024年第5期541-550,共10页Journal of Hebei University(Natural Science Edition)
基 金:国家自然科学基金资助项目(62173122);河北省自然科学基金资助项目(F2022201034)。
摘 要:段塞流是气液两相流中典型流型,准确测量其分相流量有利于实时监控生产过程,优化工艺控制,确保系统在安全、经济的工况下运行.本文在改进长喉文丘里管的基础上,设计了一种集近红外(NIR)、声发射(AE)技术于一体的水平气液流量智能多传感系统.利用AE传感器和NIR传感器检测气液两相的流动噪声信息和截面信息,采用经验模态分解法(EMD)提取气体体积分数的特征变量.通过集成学习算法进行特征级融合,融合后的段塞流体积含气率预测模型平均绝对百分比误差(MAPE)为4.11%,92.45%的预测结果偏差在±10%以内.在Collins模型的基础上,提出了基于梯度提升决策树(GBDT)的段塞流质量流量预测模型,其MAPE值为0.96%,全部预测结果的偏差在±20%以内.本研究为气液两相流段塞流参数混合不分离测量提供了一种新方法,为气液两相流动机理研究奠定了基础.Plug flow is a typical flow pattern in gas-liquid two-phase flow,and accurate measurement of plug flow is conducive to real-time monitoring and optimizing process of production process,ensuring safe and economical operation of the system.Based on the improved Venturi tube with long throat diameter,an intelligent multi-sensor system for horizontal gas-liquid flow is designed,which integrates near infrared(NIR)and acoustic emission(AE)technology.AE sensor and NIR sensor were used to detect the gas-liquid phase interaction and disturbance information,and empirical mode decomposition(EMD)was used to extract the characteristic variables of gas volume fraction.The integrated learning algorithm was used for feature-level fusion.The mean absolute percentage error(MAPE)of the fused plug flow volume gas content prediction model was 4.11%,and the deviation of 92.45%of the predicted results was within±10%.On the basis of Collins model,a mass flow prediction model of plug flow based on gradient lifting decision tree(GBDT)is proposed.The MAPE value of GBDT is 0.96%,and the deviation of all prediction results is within±20%.This study provides a new method for measuring the parameters of gas-liquid two-phase plug flow,which provides a research basis for sensing mechanism and measurement of multiphase flow.
关 键 词:气液两相流 数据融合 段塞流 多传感器 集成学习算法
分 类 号:TH814[机械工程—仪器科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7