检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庞梦媛 赵文杰[1] PANG Mengyuan;ZHAO Wenjie(Department of Automation,North China Electric Power University,Baoding 071003,China)
出 处:《电力科学与工程》2024年第9期71-78,共8页Electric Power Science and Engineering
基 金:河北省自然科学基金资助项目(F2014502059)。
摘 要:以W火焰锅炉为例,首先探讨了可调变量与NOx排放量和锅炉燃烧效率之间的关系,将所得的先验信息采用单调约束的形式与数据驱动建模融合,建立了灰狼优化融合先验知识的支持向量机燃烧特性预测模型。结果表明,该模型提高了预测精度。在此基础上,针对NSGA-Ⅱ算法易陷入极值的问题,加入带有惩罚机制的锦标赛选择策略,对不同工况下的W火焰锅炉进行多目标燃烧优化实验,并提出将归一化环保和经济指标得到的综合效益因子作为评判锅炉燃烧优化结果的标准。实验表明,出力为290MW工况下,综合效益因子提高了7.11%。Taking the W-flame boiler as an example,the relationship among adjustable variables,NOx emissions,and boiler combustion efficiency is first explored.The obtained prior information is fused innovatively with data-driven modeling in the form of monotonic constraints,and a prediction model for combustion characteristics of support vector machine based on grey wolf optimization and prior knowledge fusion is established.The results show that the model improved the prediction accuracy.On this basis,in response to the problem of NSGA-II algorithm easily falling into extreme values,a tournament selection strategy with a penalty mechanism is added to conduct multi-objective combustion optimization experiments on W-flame boilers under different operating conditions.The comprehensive benefit factor obtained from normalized environmental and economic indicators is proposed as the standard for evaluating the combustion optimization results of the boiler.The experiment shows that under the operating condition of 290 MV output,the comprehensive benefit factor increased by 7.11%.
关 键 词:燃烧优化 NOX排放量 锅炉燃烧效率 支持向量机 NSGA-Ⅱ
分 类 号:TK019[动力工程及工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.93.117