检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周孔均 常涛 刘维 吕小红 Zhou Kongjun;Chang Tao;Liu Wei;LüXiaohong(State Grid Chongqing Electric Power Company,Chongqing 400014,China)
出 处:《计算机应用与软件》2024年第9期319-328,共10页Computer Applications and Software
基 金:重庆市自然科学基金项目(cstc2016jcyjA0214)。
摘 要:为提升时间序列异常检测方法的通用性与精度,提出一种基于注意机制LSTM-CNN的准周期时间序列异常检测框架。该文通过QTS分割算法将准周期时间序列分割成多个连续的高质量准周期子序列,提升抗噪声能力;基于LSTM-CNN模型同时捕捉准周期的总体变化趋势和局部特征,精确地模拟准周期的波动模式。在4个公共数据集上的实验结果表明,提出的方法能够有效提升序列行为异常检测的效果。In order to improve the generality and accuracy of the detection method,an automatic quasi periodic time series anomaly detection framework based on attention mechanism LSTM-CNNis proposed.The purpose of the QTS segmentation algorithm was to automatically and accurately segment QTS into continuous high-quality quasi periods and improve the ability of anti-noise.The purpose of the LSTM-CNN model was to accurately simulate the quasi periodic fluctuation pattern by using the overall trend and local characteristics of the quasi periodic at the same time.Experimental results on four common datasets show that the proposed method can effectively improve the detection versatility and accuracy.
关 键 词:准周期时间序列 异常检测 注意机制 长短期记忆网络
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91