基于平衡分层K均值的正交无监督大型图嵌入降维算法  

ORTHOGONAL UNSUPERVISED LARGE GRAPH EMBEDDING DIMENSION REDUCTION ALGORITHM BASED ON BALANCED HIERARCHICAL K-MEANS

在线阅读下载全文

作  者:张志丽 古晓明[1] 王文晶 Zhang Zhili;Gu Xiaoming;Wang Wenjing(Shanxi Insititute of Economic Management,Taiyuan 030024,Shanxi,China;Shanxi Vocational University of Engineering Science and Technology,Taiyuan 030000,Shanxi,China)

机构地区:[1]山西经济管理干部学院,山西太原030024 [2]山西工程科技职业大学,山西太原030000

出  处:《计算机应用与软件》2024年第9期348-356,362,共10页Computer Applications and Software

基  金:山西省教育科学规划课题(HLW-20165)。

摘  要:为了降低大规模数据集降维的计算代价,提出一种基于平衡分层K均值的正交无监督图嵌入降维方法。该文给出局部保持投影和谱回归等价的充分必要条件;基于平衡分层K-means的锚生成策略,构建加快局部保持投影求解过程的特殊相似矩阵;再结合正交约束,提出正交化无监督大型图嵌入降维方法;在几种公开数据集上进行扩展实验,结果表明提出的方法能够对大规模数据集实现高效快速的降维。In order to reduce the computational cost of dimensionality reduction of large-scale data sets,an orthogonal unsupervised graph embedding dimensionality reduction algorithm based on balanced hierarchical K-means is proposed.The necessary and sufficient conditions for locally preserving the equivalence of projection and spectral regression were obtained.An anchor generation strategy based on balanced hierarchical K-means was put forward,and a special similarity matrix was constructed to accelerate the process of local preserving projection.Combined with the orthogonal constraints,an orthogonal unsupervised large-scale graph embedding dimension reduction method is proposed.Experiments on several public data sets show that the proposed method can achieve efficient and fast dimensionality reduction for large-scale data sets.

关 键 词:数据降维 平衡分层K均值 局部保持投影 无监督大型图嵌入 

分 类 号:TP393.06[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象