检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王斌 陈宏 曾峥 张建林 周凯 WANG Bin;CHEN Hong;ZENG Zheng;ZHANG Jianlin;ZHOU Kai
机构地区:[1]中电(福建)电力开发有限公司,福建南平353000 [2]中电投绿能科技有限公司,上海虹口200000
出 处:《今日自动化》2024年第7期23-24,38,共3页Automation Today
摘 要:文章针对光伏电站火灾多发、监测困难的问题,提出了一种基于YOLOv3目标识别算法的无人值守光伏电站防火在线监测系统。该系统通过多传感器数据融合、异构网络通信等关键技术,实现了对光伏电站火情的早期预警和准确定位。试验结果表明,该系统在火情检测准确率、数据传输效率、用户交互体验等方面均达到了优异水平,可显著提升光伏电站运维的智能化程度。This article proposes an unmanned online fire prevention monitoring system for photovoltaic power stations based on the YOLOv3 target recognition algorithm to address the issues of frequent fire incidents and difficult monitoring.The system achieves early warning and accurate positioning of photovoltaic power plant fires through key technologies such as multi-sensor data fusion and heterogeneous network communication.The experimental results show that the system has achieved excellent levels in fire detection accuracy,data transmission efficiency,and user interaction experience,which can significantly improve the intelligence level of photovoltaic power station operation and maintenance.
关 键 词:光伏电站 火灾监测 YOLOv3 多传感器数据融合
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117