检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱锟鹏[1,2] 黄称意 李俊 ZHU Kunpeng;HUANG Chengyi;LI Jun(Advanced Manufacturing Technology Research Center,Institute of Intelligent Machines,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Changzhou 213164,China;School of Machinery and Automation,Wuhan University of Science and Technology,Wuhan 430081,China)
机构地区:[1]中国科学院合肥物质科学研究院智能机械研究所先进制造技术研究中心,江苏常州213164 [2]武汉科技大学机械自动化学院,湖北武汉430081
出 处:《计算机集成制造系统》2024年第9期3038-3049,共12页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(52175528);国家重点研发计划资助项目(2018YFB1703200)。
摘 要:刀具状态的准确监测对于提高切削加工质量和加工效率至关重要。在当前广泛用于刀具磨损状态监测的间接法中,多以单步或短期预测为主,没有实现多步预测,且累积误差较大。高斯过程是间接法中应用较多的一种机器学习方法,然而传统的高斯过程回归由于模型结构和算法的限制,对刀具磨损预测的精度不高。针对上述不足,提出了改进的自回归递归高斯过程模型对刀具磨损进行多步预测。为了减小预测累积误差,在模型训练中应用了改进的模型更新方式、组合核函数,对样本设置了遗忘因子,在预测中加入了偏差校正方法。研究了各个改进因素对模型的影响并综合所有有利因素,实现了较准确的刀具磨损状态多步预测,在3个测试集上预测误差分别降低了85.68%,20.67%和63.32%。Accurate monitoring of tool condition is crucial for improving machining quality and efficiency.In the current widely used indirect methods for tool wear monitoring,the single-step or short-term predictions are predominant,without achieving multi-step prediction and suffering from significant cumulative errors.Gaussian process is a machine learning method commonly applied in indirect methods.However,traditional Gaussian process regression has limited accuracy in tool wear prediction due to model structure and algorithm constraints.To address these shortcomings,an improved autoregressive recursive Gaussian process model was proposed for multi-step prediction of tool wear.To reduce cumulative prediction errors,the improved model updating methods and the composite kernel functions were applied to set forgetting factor for samples during model training.Additionally,a bias correction method was incorporated in the prediction process.The effects of each improvement factor on the model were studied,and the accurate multi-step prediction of tool wear state was achieved by combining all favorable factors.The prediction errors reduced by 85.68%,20.67%and 63.32%on three test sets respectively.
分 类 号:TG71[金属学及工艺—刀具与模具] TH117.1[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.74.193