检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱龙隆 陈翔 陈浩东 牛继堂 刘雯靓 林声睿 张栋[1,5] 吴春明 Zhu Longlong;Chen Xiang;Chen Haodong;Niu Jitang;Liu Wenjing;Lin Shengrui;Zhang Dong;WuChunming(College of Computer and Data Science,Fuzhou University,Fuzhou 350108;College of Computer Science and Technology,Zhejiang University,Hangzhou 310013;Zhejiang Media Group,Hangzhou 310005;Polytechnic Institute of Zhejiang University,Hangzhou 310015;Quan Cheng Laboratory,Jinan 250103)
机构地区:[1]福州大学计算机与大数据学院,福州350108 [2]浙江大学计算机科学与技术学院,杭州310013 [3]浙江广播电视集团,杭州310005 [4]浙江大学工程师学院,杭州310015 [5]泉城实验室,济南250103
出 处:《计算机研究与发展》2024年第10期2526-2539,共14页Journal of Computer Research and Development
基 金:国家重点研发计划项目(2023YFB2904000,2023YFB2904005);泉城实验室重点项目(QCLZD202304);山东省实验室项目(SYS202201);国家自然科学基金项目(623B2090)。
摘 要:区块链存在网络动态性强和其管理困难等问题,使得区块链普遍存在DDoS攻击和账户接管等异常现象.现有区块链异常检测方法多从所有区块链账户中提取历史交易信息和交易频率等特征加以分析以甄别异常.然而,随着区块链数据规模的不断扩大,现有方法在提取特征时面临内存消耗高、检测精度低的挑战.为此,提出了一种高检测精度、低内存开销的区块链异常检测机制,该机制采用近似测量算法将区块链异常检测转化为异常交易账户检测,包括区块内异常账户和跨区块异常账户.对于区块内异常账户,即仅存在于单个区块内的异常账户,使用Sketch算法进行账户识别,精度高.而对于存在于多个区块且难以通过单个区块信息检测到的跨区块异常账户,则通过聚合和分析多区块信息进行账户的准确检测.使用包含88847个区块的真实区块链数据评估上述机制.实验结果表明,与现有代表性方法对比,所提出的机制将区块链异常检测的召回率最高提升了6.3倍,F1分数最高提升了4.4倍.因此,提出的高精度区块链异常检测机制对于规范区块链交易行为、维护系统安全性具有意义.Blockchain suffers from network dynamics and management difficulties,making the anomalies such as DDoS attacks and account takeovers possible.Existing approaches that detect anomalies in blockchains extract features,such as historical transaction information and transaction frequencies,from blockchain accounts to identify anomalies.However,the increasing scale of blockchain data results in the challenge of high memory consumption and low detection accuracy in the feature extraction of existing approaches.To address this challenge,we propose a blockchain anomaly detection mechanism that achieves detection accuracy and reduces resource footprints.This mechanism embraces approximate sketching algorithms to transform the detection of blockchain anomalies into that of malicious accounts,including intra-block accounts and inter-block accounts.For intra-block accounts,i.e.,the malicious accounts that occur inside a single block and the mechanism uses sketching algorithms to collectively filter out those accounts with high precision.For inter-block accounts,malicious accounts can be hardly detected by analyzing the information of a single block,it aggregates multi-block information to accurately detect those accounts.We evaluate our mechanism with real Ethereum block data comprising of 88847 blocks.Our results indicate that compared with typical existing approaches,our mechanism improves the recall of detecting blockchain anomalies by up to 6.3 times and the F1 score by up to 4.4 times.Therefore,our proposed blockchain anomaly detection mechanism can bring benefits to regulating blockchain transaction behaviors and maintain system security.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63