检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贺亦琛 师长立 郭小强[1] 贺伟 韩涛 He Yichen;Shi Changli;Guo Xiaoqiang;He Wei;Han Tao(Department of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China;Electrical Engineering Chinese Academy of Sciences,Beijing 100130,China;Three Gorges Electric Power Co.,Ltd.,Wuhan 430024,China)
机构地区:[1]燕山大学电气工程学院,秦皇岛066004 [2]中国科学院电工研究所,北京100130 [3]三峡电能有限公司,武汉430024
出 处:《太阳能学报》2024年第9期394-404,共11页Acta Energiae Solaris Sinica
基 金:国家重点研发计划(2021YFB2601603);中国长江三峡集团有限公司科研项目(202103521)。
摘 要:准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处理,灰色关联度提取与预测日相似度高的历史日以提升预测精度,主成分分析(PCA)对输入数据进行降维,从而提高光伏功率预测的速度。其次,针对单核支持向量机对多维数据特征提取能力相对较差的问题,基于线性核函数和径向基核函数建立多核支持向量机预测模型,根据每个核函数支持向量机的预测误差计算不同的权重,从而增强对输入数据特征提取能力并提高预测精度。采用灰狼优化(GWO)算法确定不同核函数支持向量机的参数以提高预测精度。最后,通过北京某光伏电站的历史数据集验证了该算法的预测效果。实例分析表明,与传统预测算法相比,预测精度和速度都有显著提高。Accurate photovoltaic power prediction is of great significance to the stable operation of power systems.Aiming at the problems of long operation time and poor feature extraction ability in existing forecasting algorithms when dealing with multi-dimensional input weather variables,this paper proposes a forecasting algorithm based on multi-kernel function support vector machine with parameter optimization.First of all,the new algorithm preprocesses the data,gray correlation degree is used to extract historical days with high similarity to the forecasted day to improve the forecasting accuracy,and principal component analysis(PCA)reduces the dimensionality of the input data to improve the accuracy of photovoltaic power forecasting.Secondly,in view of the relatively poor ability of single-kernel support vector machine to extract multi-dimensional data features,a multi-kernel support vector machine model is established based on linear kernel function and radial basis kernel function to predict photovoltaic power generation.Different weights are calculated according to the prediction error of each kernel function support vector machine to enhance the feature extraction ability of the input data and improve the prediction accuracy.The gray wolf optimization(GWO)algorithm is used to determine the parameters of the support vector machine with different kernel functions to improve the prediction accuracy.Finally,the prediction effect of the algorithm is verified by the historical dataset of a photovoltaic power station in Beijing.The example analysis shows that compared with the traditional forecasting algorithm,the forecasting accuracy and speed are significantly improved.
关 键 词:光伏 预测 主成分分析 多核支持向量机 灰狼优化算法
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63