基于样本信息熵辅助的深度强化学习抗干扰策略  

Deep reinforcement learning-empowered anti-jamming strategy aided by sample information entropy

在线阅读下载全文

作  者:李刚 吴麒[1] 王翔 罗皓 李良鸿 景小荣[2] 陈前斌[2] LI Gang;WU Qi;WANG Xiang;LUO Hao;LI Lianghong;JING Xiaorong;CHEN Qianbin(Southwest Institute of Electronic Technology,Chengdu 610036,China;School of Communications and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]中国西南电子技术研究所,四川成都610036 [2]重庆邮电大学通信与信息工程学院,重庆400065

出  处:《通信学报》2024年第9期115-128,共14页Journal on Communications

基  金:国家自然科学基金资助项目(No.U23A20279);中电天奥创新理论技术群基金资助项目(No.2022-1193-04-04)。

摘  要:针对深度强化学习驱动的智能化干扰,提出了一种基于样本信息熵辅助的通信抗干扰策略。首先,基于神经网络对抗干扰策略网络和熵预测网络进行设计;接着,利用短时傅里叶变换对接收信号处理所形成的频谱瀑布图作为样本,对抗干扰策略网络和信息熵预测网络进行训练;之后,利用信息熵预测网络对抗干扰策略网络的训练样本进行精细化筛选,以提高训练样本的质量,最终提高抗干扰策略的在线决策能力和泛化性能。仿真结果表明,在干扰方干扰策略更新频率不超过通信方40倍且最大干扰通道数为3的极端条件下,基于样本信息熵辅助的通信抗干扰策略仍可取得至少61%的成功率;同时,与其他几种对比抗干扰策略相比,所提通信抗干扰策略具有更快的收敛速度。For the deep reinforcement learning(DRL)-empowered intelligent jamming,an anti-jamming strategy aided by sample information entropy was proposed.Firstly,the anti-jamming strategy network and entropy prediction network were designed based on neural networks.Then,the anti-jamming strategy network and entropy prediction network were trained with the samples of the spectrum waterfall,which were formed by performing the short-time Fourier transform to the received signals.The information entropy prediction network was utilized for fine-grained selection of training samples of the anti-jamming strategy network to improve the quality of training samples,thereby enhancing the ultimate online decision-making capability and generalization performance of the anti-jamming strategy.The simulation results indicate that under the extreme condition where the jamming strategy update frequency does not exceed forty times that of the communication anti-jamming strategy and the maximum number of jamming channels is 3,the proposed antijamming strategy,aided by sample information entropy,can still achieve a success rate of at least 61%.Moreover,compared to several other anti-jamming strategies,the proposed strategy demonstrates faster convergence.

关 键 词:抗干扰 深度强化学习 样本信息熵 智能干扰 

分 类 号:TN975[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象