检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘祥洲 岳军[1] Liu Xiangzhou;Yue Jun(Department of Mathematics,Tiangong University,Tianjin 300387,China)
出 处:《南开大学学报(自然科学版)》2024年第4期18-24,共7页Journal of Nankai University(Natural Sience)
摘 要:证明了不含5个顶点的导出有向路和不含三角形的定向图的染色数是有界的;此外,当D是一个含有汇点(或源点)的围长至少为5的定向图,且不含P+(1,2,1), P+(1,3), P-(1,2,1)或P-(1.3)作为导出子图,证明了D的染色数是有界的.在定向图的染色领域,Aboulker、Charbit和Naserasr提出了猜想:对于任意的定向森林F,不含导出F的定向图的染色数是有界的.这些结果为该猜想的正确性提供了一定的支持.It's proved that the oriented graphs with no induced directed path on five vertices and no triangle have bounded dichromatic number.And further,let D be an oriented graph with a sink(or source)vertex and girth at least 5.If D contains no P+(1,2,1),P+(1,3),P-(1,2,1),or P-(1,3)as an induced subgraph,then it has a bounded dichromatic number.Aboulker et al.gave the following conjecture:For any oriented forest F,any graph contains no F?as an induced subgraph has bounded dichromatic number.The above results give some small supports for the conjecture of Aboulker et al.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185