基于蝙蝠—粒子群算法优化BP神经网络的电动汽车锂电池故障诊断  

Fault Diagnosis of Lithium Battery for Electric Vehicle Based on BP Neural Network Optimized by Batparticle Swarm Optimization Algorithm

在线阅读下载全文

作  者:乔维德 陆超 袁桂芳 QIAO Weide;LU Chao;YUAN Guifang(Office of Scientific Research and Development Planning,Wuxi Open University,Wuxi 214011,China;Office of Academic Affairs,Wuxi Open University,Wuxi 214011,China;Department of Automation Engineering,Jiangsu Union Vocational and Technical College,Wuxi 214028,China)

机构地区:[1]无锡开放大学科研与发展规划处,江苏无锡214011 [2]无锡开放大学教务处,江苏无锡214011 [3]江苏联合职业技术学院无锡机电分院自动化工程系,江苏无锡214028

出  处:《苏州市职业大学学报》2024年第3期45-51,共7页Journal of Suzhou Vocational University

摘  要:针对电动汽车锂电池故障诊断问题,在分析锂电池故障特征与故障原因的基础上,建立电动汽车锂电池故障诊断模型。该模型包括锂电池故障样本采集处理、BP神经网络、故障特征编码输出及故障类型诊断。采取蝙蝠—粒子群算法优化BP神经网络初始结构参数,利用改进BP算法和故障样本训练并测试BP神经网络。仿真实验结果表明:相比BP算法、遗传算法、粒子群算法,蝙蝠—粒子群算法优化BP神经网络的故障诊断准确性最高、训练时间最短、训练误差最小。In order to diagnose the fault of lithium battery of electric vehicle,on the basis of analyzing the fault characteristics and causes of lithium battery failure,a fault diagnosis model of lithium battery for electric vehicle was established,which included lithium battery fault sample collection and processing,BP neural network,fault feature coding output and fault type diagnosis.The batparticle swarm optimization algorithm was used to optimize the initial structure parameters of the BP neural network,and the improved BP algorithm and fault samples were used to train and test the BP neural network.The simulation results show that compared with the BP algorithm,genetic algorithm and particle swarm algorithm,the batparticle swarm optimization BP neural network has the highest fault diagnosis accuracy,the shortest training time and the smallest training error.

关 键 词:锂电池 BP神经网络 蝙蝠—粒子群算法 故障诊断 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TM910.7[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象