检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乔维德 陆超 袁桂芳 QIAO Weide;LU Chao;YUAN Guifang(Office of Scientific Research and Development Planning,Wuxi Open University,Wuxi 214011,China;Office of Academic Affairs,Wuxi Open University,Wuxi 214011,China;Department of Automation Engineering,Jiangsu Union Vocational and Technical College,Wuxi 214028,China)
机构地区:[1]无锡开放大学科研与发展规划处,江苏无锡214011 [2]无锡开放大学教务处,江苏无锡214011 [3]江苏联合职业技术学院无锡机电分院自动化工程系,江苏无锡214028
出 处:《苏州市职业大学学报》2024年第3期45-51,共7页Journal of Suzhou Vocational University
摘 要:针对电动汽车锂电池故障诊断问题,在分析锂电池故障特征与故障原因的基础上,建立电动汽车锂电池故障诊断模型。该模型包括锂电池故障样本采集处理、BP神经网络、故障特征编码输出及故障类型诊断。采取蝙蝠—粒子群算法优化BP神经网络初始结构参数,利用改进BP算法和故障样本训练并测试BP神经网络。仿真实验结果表明:相比BP算法、遗传算法、粒子群算法,蝙蝠—粒子群算法优化BP神经网络的故障诊断准确性最高、训练时间最短、训练误差最小。In order to diagnose the fault of lithium battery of electric vehicle,on the basis of analyzing the fault characteristics and causes of lithium battery failure,a fault diagnosis model of lithium battery for electric vehicle was established,which included lithium battery fault sample collection and processing,BP neural network,fault feature coding output and fault type diagnosis.The batparticle swarm optimization algorithm was used to optimize the initial structure parameters of the BP neural network,and the improved BP algorithm and fault samples were used to train and test the BP neural network.The simulation results show that compared with the BP algorithm,genetic algorithm and particle swarm algorithm,the batparticle swarm optimization BP neural network has the highest fault diagnosis accuracy,the shortest training time and the smallest training error.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.182.104