检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐啸 项诗娴 房宇娇 王钰楠 虞江 Tang Xiao;Xiang Shixian;Fang Yujiao;Wang Yunan;Yu Jiang(Shinan Power Supply Branch,State Grid Shanghai Electric Power Co.,Ltd.,Shanghai 201109,China)
机构地区:[1]国网上海市电力公司市南供电公司,上海201109
出 处:《电气自动化》2024年第5期31-33,37,共4页Electrical Automation
基 金:国网上海市电力公司科技项目(B30932220002)。
摘 要:短期电网负荷表现出非规律的波动性和非稳定的周期性,对其进行准确预测是一项挑战。采用时变滤波的经验模态分解,对一维观测信号进行分解,得到具有不同尺度特征的固有模态函数。通过随机重构构造一个新的观测值,形成二维矩阵。引入支持向量机来替代门控循环单元最终输出层中的归一化指数函数,并将交叉熵函数替换为基于边缘的函数,从而进行基于混合模型的短期电网负荷预测。试验结果表明,与大间隔最近邻算法、卷积神经网络以及融合门控循环单元的支持向量机相比,混合模型的计算成本虽然稍高,但均方根误差和平均绝对误差都是最小的。因此,混合模型具有最好的预测性能,可用于短期电网负荷预测。It is a challenge to predict the short-term power grid load accurately because of its irregular fluctuations and unstable periodicity.Empirical mode decomposition(EMD)using time-varying filtering(TVF)was applied to decompose one-dimensional observation signals,and the intrinsic mode function(IMF)with different scale features was obtained.A new observation value was constructed through random reconstruction to form a two-dimensional matrix.The support vector machine was introduced to replace the Softmax in the final output layer of gated loop unit,and the cross-entropy function was replaced by the edge-based function,thus achieving short-term power grid load forecasting based on hybrid models.The experimental results show that compared with the large interval nearest neighbor algorithm,convolutional neural network,and support vector machine(SVM)with fused gated recurrent unit(GRU),the hybrid model has slightly higher computational costs,but the root-mean-square error and mean absolute error are the smallest.Therefore,the TVF-EMD-SVM-GRU hybrid model has the best predictive performance and can be used for short-term power grid load forecasting.
关 键 词:短期电网负荷预测 时变滤波的经验模态分解 支持向量机 门控循环单元 混合模型
分 类 号:TM734[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7