检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊坤来 沙志超 XIONG Kunlai;SHA Zhichao(College of Electronic Science,National University of Defense Technology,Changsha 410073,China)
机构地区:[1]国防科技大学电子科学学院,湖南长沙410073
出 处:《无线电通信技术》2024年第5期1016-1023,共8页Radio Communications Technology
基 金:国家自然科学基金(62101570)。
摘 要:针对现有测向系统多信号适应能力弱、测向精度低的问题,提出一种基于数据驱动的高精度阵列测向新方法。该方法提取单信号入射时的输入特征向量,基于卷积神经网络构建单信号测向网络框架。利用信号的独立性,将多信号测向问题转化为单信号测向问题,在单信号训练网络的基础上实现多信号来波方向估计。仿真实验与理论分析结果表明,该方法有效减少了输入特征维数和网络训练样本数目,在多信号同时入射及阵列互耦效应条件下均获得了高精度的到达方向(Direction of Arrival,DOA)估计的测向结果。Aiming at the problems of weak multi-signal adaptability and low direction finding estimatesaccuracy of existing array direction finding systems,a new data-driven intelligent array direction finding method is proposed.Firstly,the input features under the condition of uniform linear array of single-signal incidence are extracted,a single-signal direction finding network framework is constructed based on convolutional neural network,and then the multi-signal direction finding problem is transformed into a single-signal direction finding problem by using the independence of the signal,and the multi-signal direction estimation is realized on the basis of the single-signal training network.Simulation experiments and theoretical analysis results show that the proposed method effectively reduces the input feature dimension and the number of network training samples,and it obtains high Direction of Arrival(DOA)estimates accuracy under multi-signal and mutual coupling effects.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249