检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戚壮 姜磊 刘鹏飞[2] 申永军 苗新添[3] 顾晓辉 QI Zhuang;JIANG Lei;LIU Pengfei;SHEN Yongjun;MIAO Xintian;GU Xiaohui(College of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;State Key Lab of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;Beijing Rolling Stock Section,China Railway Beijing Group Co.,Ltd.,Beijing 100039,China)
机构地区:[1]石家庄铁道大学机械工程学院,石家庄050043 [2]石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄050043 [3]中国铁路北京局集团有限公司北京车辆段,北京100039
出 处:《振动与冲击》2024年第19期19-27,36,共10页Journal of Vibration and Shock
基 金:国家自然科学基金面上项目(52072249)。
摘 要:空气弹簧作为高速动车组二系悬挂中的重要元件,直接影响了车辆的运行品质,如何建立更加贴近实际的空气弹簧模型逐渐成为车辆动力学分析的重点。基于流体力学理论对空气弹簧内部气体方程进行了推导,依据动网格理论建立了空气弹簧流体力学模型,并通过台架试验验证了模型的准确性。探索了空气弹簧系统内部湍流的计算方法,研究了空气弹簧不同载荷下的刚度特性,进一步分析了空气弹簧的动态特性。研究空气弹簧系统结构参数对垂向特性的影响,通过对管路不同结构参数下Helmholtz共振频率的计算,得出当空气弹簧激振频率与Helmholtz共振频率相同时,会增大空气弹簧阻尼系数。不同连接管路直径下,频率在1.0~5.0 Hz内,随着频率的增大,动刚度明显增大,当频率大于5.0 Hz之后,动刚度逐渐减小并趋于水平;频率在0.5~5.0 Hz内,连接管路直径越小,阻尼系数越大且具有一定滞后性,当频率大于10.0 Hz之后,阻尼系数趋近于0。不同连接管路长度下,频率在1.0~7.0 Hz内,频率越大动刚度越大,当频率大于7.0 Hz之后,随着频率的增加,动刚度逐渐减小并趋于稳定;频率在1.0~9.0 Hz内,连接管路长度越短,空气弹簧阻尼系数越小。As an important component in secondary suspension of high-speed electric multiple units,air springs directly affect operational quality of vehicles.How to establish a more realistic air spring model gradually becomes a focus of vehicle dynamic analysis.Here,based on the theory of fluid mechanics,the internal gas equation of air spring was derived,and a fluid-dynamic model of air spring was established based on the dynamic grid theory.The correctness of the model was verified with bench tests.This model was used to explore the calculation method of internal turbulence in air spring system,study stiffness characteristics of air spring under different loads,and further analyze dynamic characteristics of air spring.Effects of structural parameters of air spring system on its vertical characteristics were studied.By calculating Helmholtz resonance frequencies under different structural parameters of pipeline,it was shown that when the excitation frequency of air spring is the same as Helmholtz resonance frequency,damping coefficient of air spring can increase;under different connecting pipe diameters,within the frequency range of 1.0-5.0 Hz,with increase in frequency,dynamic stiffness obviously increases,after frequency is 5.0 Hz,dynamic stiffness gradually decreases and tends to be horizontal;within the frequency range of 0.5-5.0 Hz,the smaller the connecting pipe diameter,the larger the damping coefficient and it has a certain degree of hysteresis;after frequency is larger than 10.0 Hz,damping coefficient tends to be 0;under different connection pipeline lengths,within the frequency range of 1.0-7.0 Hz,the higher the frequency,the larger the dynamic stiffness;after frequency is 7.0 Hz,with increase in frequency,dynamic stiffness gradually decreases and tends to be stable;within the frequency range of 1.0-9.0 Hz,the shorter the connection pipeline length,the smaller the damping coefficient of air spring.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70