检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨智勇 陈向东[1] 陈佳慧 YANG Zhi-yong;CHEN Xiang-dong;CHEN Jia-hui(School of Computer and Information Science,Chongqing Normal University,401331,Chongqing;School of Big Data and Internet of Things,Chongqing Vocational Institute of Engineering,402246,Chongqing)
机构地区:[1]重庆师范大学计算机与信息科学学院,重庆401331 [2]重庆工程职业技术学院大数据与物联网学院,重庆402246
出 处:《蚌埠学院学报》2024年第5期40-48,72,共10页Journal of Bengbu University
基 金:重庆市教育委员会科学技术研究项目(KJQN202103413)。
摘 要:针对现有图神经网络新闻推荐方法用户兴趣建模角度单一,且无法迅速拟合新节点特征的问题,提出一种全局图增强的图注意力网络模型,在以全局图采样子图的方式聚合邻居节点特征的同时,综合考虑用户历史时序特征和类别特征,多层级地建模用户兴趣。在MIND数据集上通过大量实验表明,提出的模型优于现有的基线网络方法。To address the limitations of existing graph neural network-based news recommendation methods,which often suffer from a simplistic modeling of user interests and the inability to rapidly adapt to new node features,a novel global graph-enhanced graph attention network(GGE-GAT)model was proposed in this study.By aggregating neighbor node features using subgraph sampling from a global graph,the proposed model comprehensively models user interests by considering both user historical temporal features and category features in a multi-level manner.Extensive experimentation on the MIND dataset demonstrates the superiority of the proposed model over existing baseline network methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13