检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄进[1] 张方敏[1] 胡正华[1] HUANG Jin;ZHANG Fangmin;HU Zhenghua(Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/School of Ecology and Applied Meteorology,Nanjing University of Information Science&Technology,Nanjing 210044,China)
机构地区:[1]南京信息工程大学、气象灾害预报预警与评估协同创新中心/生态与应用气象学院,南京江苏210044
出 处:《灾害学》2024年第4期108-114,共7页Journal of Catastrophology
基 金:江苏省碳达峰碳中和科技创新专项资金前沿基础项目“江苏省农林生态系统碳汇的演化规律及调控机理”(BK20220017)。
摘 要:构建冬油菜气候灾损与ENSO事件的可能关系有利于应对气候变化对油料供给的影响。基于12个主产省市1980—2019年的冬油菜单产序列,通过H-P滤波与时序全局主成分分析识别了气候灾损的年代差异。此外,梳理了主要气象灾害以及不同ENSO年型对灾损的影响,进而探讨了9种ENSO指数的预判作用。主要结果如下:①冬油菜种植效率的区域均衡性呈现出显著的上升趋势;②多数省市的气候灾损在1980s和1990s有着更高强度;③冻灾和雹灾对冬油菜种植有着更不利的影响;④ENSO强冷事件支配年份的气候灾损明显更高;⑤极端东部热带太平洋海表温度等因子驱动的分类模型对灾损年景有着较好的预判效果。Constructing the possible relationship between the disaster losses of winter oilseed rape and ENSO events is beneficial for actively addressing the with the impact of climatic change on oil supply.Based on the yield sequence of winter oilseed rape in12 major producing provinces and cities from 1980 to 2019,the climate-induced reduction rate is extracted by H-P filtering,and then time series global principal component analysis is used to identify the decadal characteristics of climatic disaster losses.In addition,the influence of main meteorological disasters and different ENSO years on the climatic disaster losses of winter oilseed rape are arranged,and the indicating effects of 9 ENSO indices on the disaster loss years are discussed.The main results are as follows:①the regional balance of planting efficiency of winter oilseed rape showed a significant upward trend;②the climatic disaster losses of most provinces and cities had the higher intensity in the 1980s and 1990s;③frost and hail disasters had the more adverse impacts on winter oilseed rape cultivation;④the disaster losses in the years dominated by strong ENSO cold events were significantly higher;⑤the Classification models driven by variables such as Extreme Eastern Tropical Pacific SST had good predictive results for the years of disaster losses.
分 类 号:F326[经济管理—产业经济] X43[环境科学与工程—灾害防治] X915.5
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200