基于FWECS-CYCBD的轴承故障特征提取研究  

Research on Bearing Fault Feature Extraction Based on FWECS‑CYCBD

在线阅读下载全文

作  者:褚惟 刘韬[1] 刘畅[1] CHU Wei;LIU Tao;LIU Chang(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology Kunming,650500,China)

机构地区:[1]昆明理工大学机电工程学院,昆明650500

出  处:《振动.测试与诊断》2024年第5期928-935,1038,共9页Journal of Vibration,Measurement & Diagnosis

基  金:云南省科技厅重大科技专项资助项目(202102AC080002);国家自然科学基金资助项目(52065030)。

摘  要:针对最大二阶循环平稳盲解卷积(maximum second-order cyclostationary blind deconvolution,简称CYCBD)特征提取中循环频率和滤波带宽难确定的问题,引入频率加权能量相关谱(frequency weighted energy correlation spectrum,简称FWECS)来改进CYCBD,实现了低信噪比条件下的滚动轴承故障特征提取。首先,通过FWECS获取周期冲击频率,构造循环频率集;其次,利用最大加权谐波显著性指标设计了一种等步长搜索策略,自适应选取滤波器长度;最后,基于优选的循环频率和滤波带宽进行CYCBD解卷积。轴承仿真和实验数据表明:在循环频率等先验信息未知的情况下,FWECS-CYCBD对故障信号中的微弱冲击特征更敏感;与最小熵解卷积、改进最大相关峭度解卷积和自适应最大二阶循环平稳盲解卷积等方法相比,所提方法在低信噪比条件下能较好地提取轴承故障特征频率信息。The cycle frequency and filter bandwidth are difficult to determine in the maximum second-order cyclostationary blind deconvolution(CYCBD)feature extraction.In this study,the frequency weighted energy correlation spectrum(FWECS)is introduced to improve the CYCBD and achieves the bearing fault feature extraction under low signal-to-noise ratio conditions.This method firstly obtains the periodic impact frequency by FWECS and constructs the cyclic frequency set.Secondly,an equal-step search strategy is designed to adaptively select the filter length using the maximum weighted harmonic significant index.Finally,the CYCBD is performed based on the optimized cyclic frequency and filter bandwidth.Bearing simulation and experimental data verification show that FWECS-CYCBD is more sensitive to the weak impact features in the fault signal under the circumstance that the priori information such as the cyclic frequency is unknown.Compared with methods such as minimum entropy deconvolution,improved maximum correlation kurtosis deconvolution and adaptive maximum second-order cyclostationary blind deconvolution,the proposed method is able to extract the frequency information of bearing fault features under low signal-to-noise ratio conditions.

关 键 词:滚动轴承 故障诊断 特征提取 最大二阶循环平稳盲解卷积 频率加权能量相关谱 加权谐波显著性指数 

分 类 号:TH133.33[机械工程—机械制造及自动化] TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象